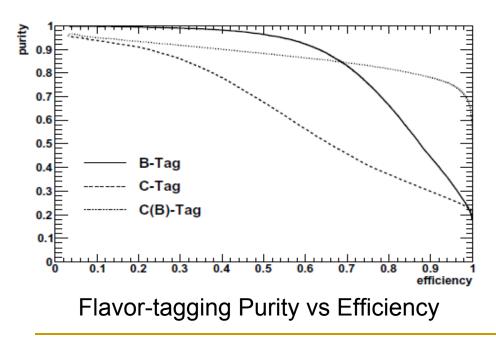
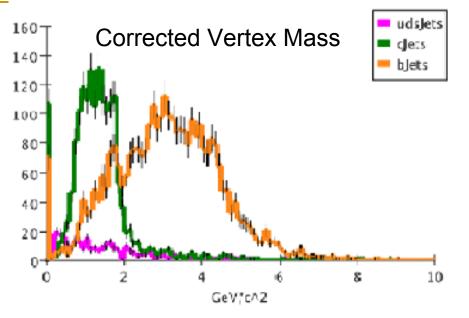
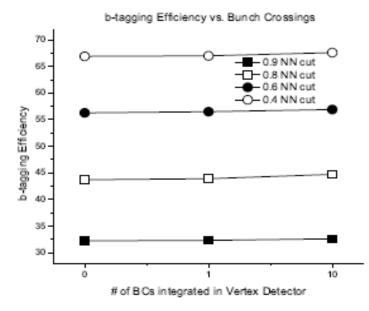
Study of the top quark mass and couplings by SiD


Erik Devetak, Oxford presented by Norman Graf TILC09, Tsukuba April 18, 2009

Simulation & Reconstruction

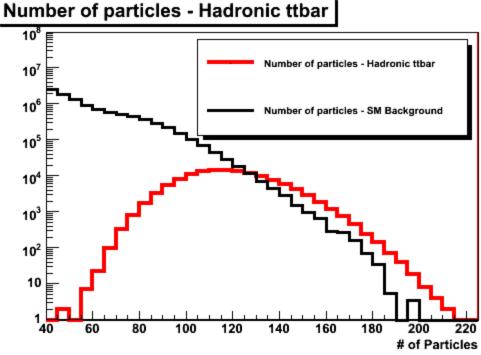

- Used canonical LOI benchmarking event sample with 80% e-, 30% e+ polarization, plus signal samples with m_{top}=174, 173.5 GeV for analysis development.
- Full event simulation using the sid02 detector model.
- Full, ab initio, event reconstruction:
 - Tracker hit digitization, track finding and fitting
 - Calorimeter clustering
 - Track-cluster association
 - Lepton ID (e, μ)
 - \rightarrow List of ReconstructedParticle
- Events processed at SLAC, Fermilab & RAL
 - ~1 min/event each for slic and reco

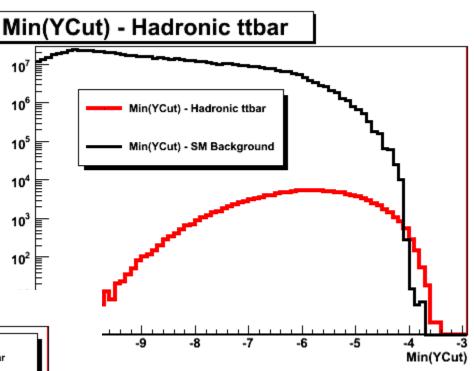
Analysis


- Pythia jet clustering
- Marlin Kinematic Fitter
- Vertexing: LCFI package
 - NN based on flavour discriminants
 - Re-optimized for SiD
 - Beam-beam background: e+e- pairs and photons from GuineaPig
 - One BX for Tracker, variable # of BX for VD

Pt Corrected Mass

Eff. vs # Background in VTX


List of cuts for hadronic final state


	selection	value
	E_{total}	$>400~{\rm GeV}$
$50~{ m GeV} <$	$\log(ycut_{min})$	> -8.5
	number of particles in event	> 80
	number of tracks in event	> 30
	W mass	$< 110~{\rm GeV}$
	NN_{b-tag} output for the most b-like jet	> 0.9
	NN_{b-tag} output for the 2^{nd} most b-like jet	> 0.4
	Sum of NN_{b-tag} outputs for all jets	> 1.5

- Ycut_{min} y value from jet algorithm used to distinguish between 5 and 6 event topology.
- W mass is intended after kinematic fitting, which is performed using only 4 least b-like jets.

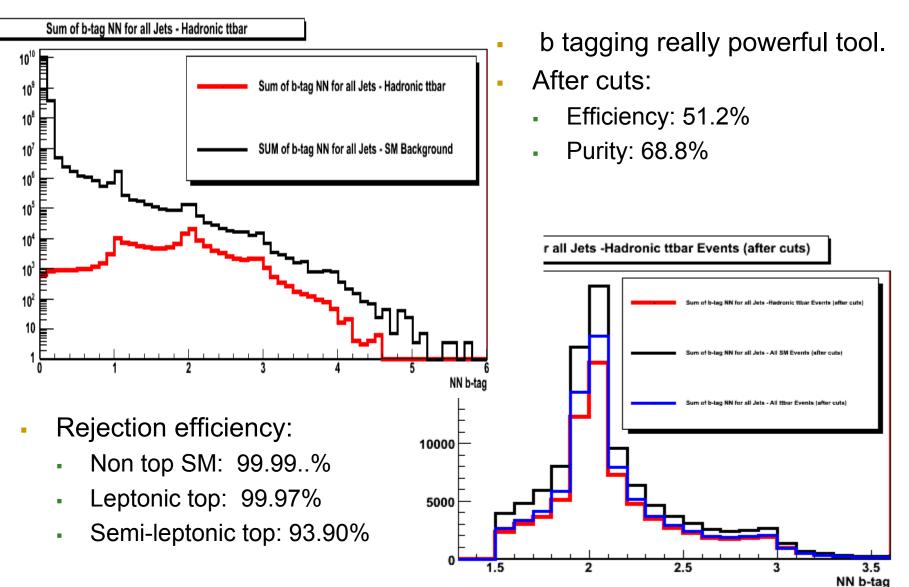
Cut Examples

- Main background, WW with final state radiation, 6 jet events ...
- Eliminating all not hadronic t-tbar background (including leptonic/semileptonic t-tbar)

10⁷

10⁶

10⁵

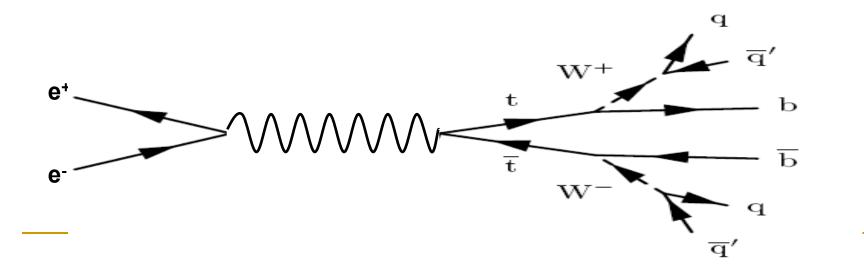

10⁴

10³

10²

Number of particles; at ILC reconstruct neutral and charged particles in jet from tracking+calorimetry.

Cut performance



Mass Analysis

Used a kinematic fitting package (Marlin KinFit)

http://ilcsoft.desy.de/portal/software_packages/marlinreco/

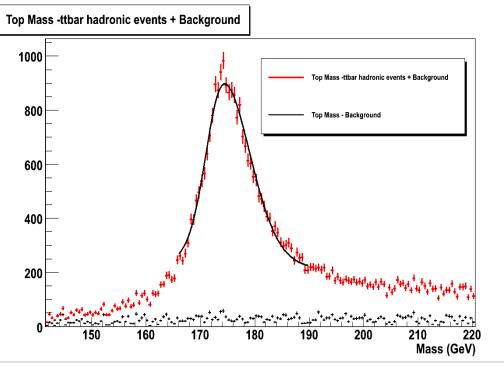
- Developed two methods to estimate statistical error on mass
- Curve fitting
- "Template fitting"
- Used data sample with mass 174GeV, templates with 174 and 173.5GeV

Kinematic Fitting

Constraints

mass(top1)	= mass(top2)
mass(W1)	= 80.4 GeV
mass(W2)	= 80.4 GeV
E_{total}	= 500 GeV
$\mathbf{p}_x; \mathbf{p}_y; \mathbf{p}_z$	= 0

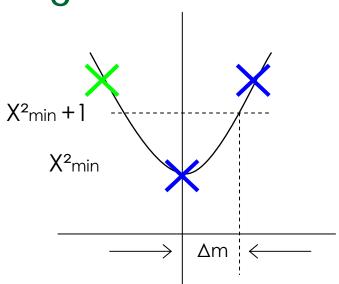
- Set kinematic constraints.
- Use uncertainty on jet energy and angles.
- By method of Lagrange multipliers finds optimized results, by varying energy and angles
- Calculates probability of event meeting the constraint.


- Constraints set by event topology (mass_W and mass_{top}) and by ILC environment (E_{total} and momentum).
- Use b tagging to reduce combinatorial possibilities (from 10 to 6) if two most b-like jets used as "b-quarks.

Kinematic Fitting - Results

- Clearly improves resolution
- However it halves the number of "usable" tops !
 - Before two top masses in event are separate entity
 - Now they have the same mass
 - Think of it as "better" way of using same information
- Also select on probability event satisfies constraints
 - Better resolution
 - Eliminate background and poorly reconstructed events

Mass Fit

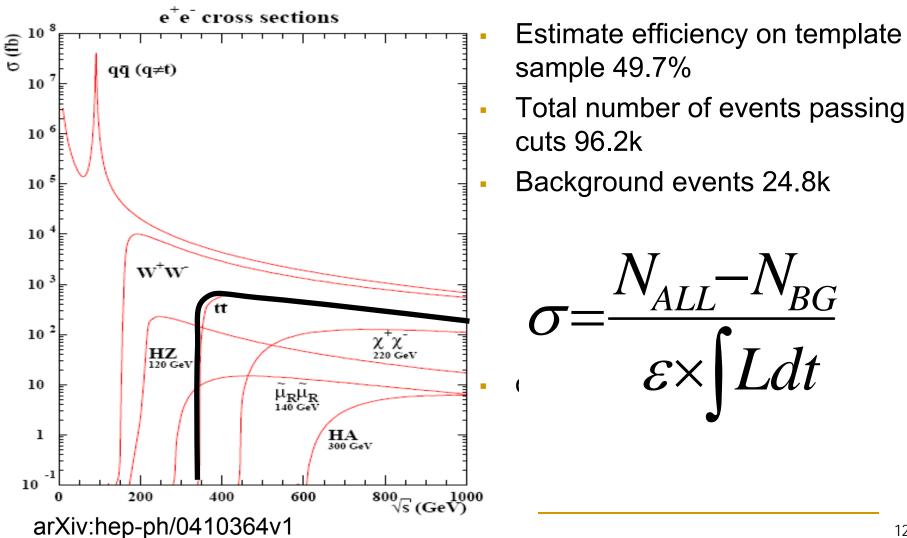


- Fit top mass after kinematic fitting and probability cut.
- Fit central region 165-190GeV
- Asymmetric double Gaussian used as resolution function
- Use template sample to determine the resolution function.
- On the "data" sample impose resolution function, vary mass and width of Breit Wigner. Background fitted with polynomial.
- Result: mass_{top} = 173.918 ± 0.053(stat)

Mass from Template fitting

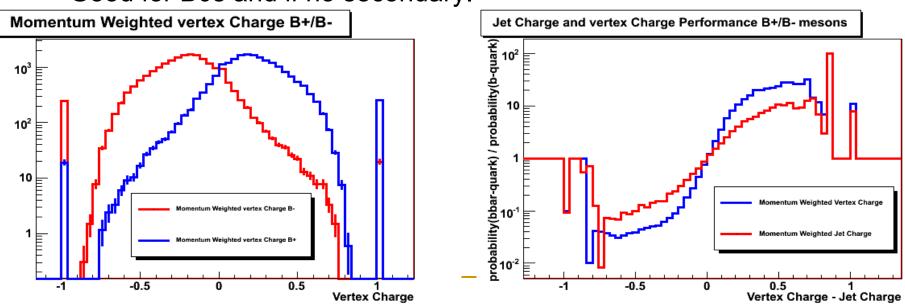
- Problem1 : only two template samples and "data" sample available
- Not enough to minimize X²
- Use symmetries of parabola, assume minimum: mass template = mass data
 - Implications none for stat. error

$$\chi_1^2 = \sum_{i=0}^{Nbins} \frac{(y_{template1,i} - y_{data,i} + \delta_i)^2}{\sigma_{template1,i}^2 + \sigma_{data,i}^2 + \sigma_{SM,i}^2}$$


Problem 2: only one background sample available

Use technique of Gaussian smearing on value of background sample

- Use top mass after kinematic fitting and probability cut.
- Fit region 150-200GeV
- Result: mass_{top} = 174.000 ± 0.038(stat)


t-tbar Cross-Section

(fully hadronic channel only)


Reconstructing Parton Charge

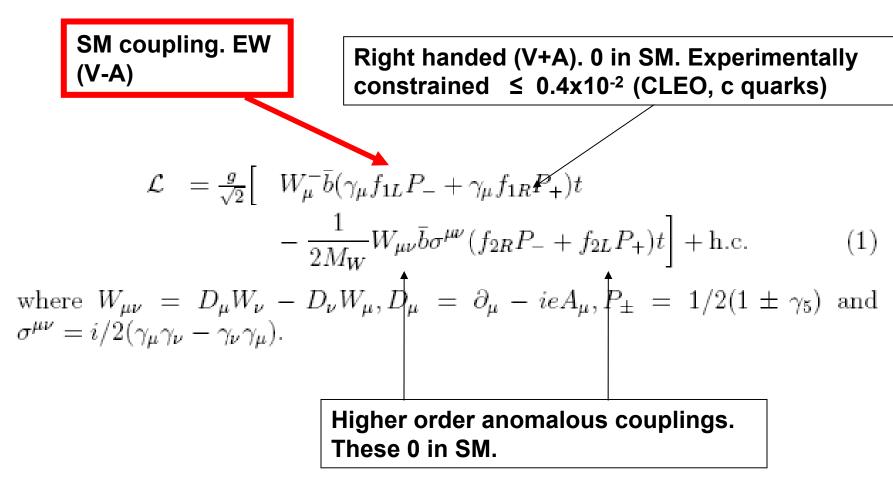
- Develop series of discriminating variables, then recombining them
 - Similar to what it is done in the flavour tagging.
- Momentum weighted secondary vertex charge
 - This is the weighted sum of the charge of all tracks in a vertex
 - Good for B+/B- if secondary found
- Momentum weighted Jet charge
 - This is the weighted sum of the charge of all tracks in a jet
 - Good for B0s and if no secondary.

Combining charge variables

To calculate Combined Charge variable:

Use "template sample" to determine ratio of signal to backgrounds in each bin for each variable.

Use this ratio as a discriminating power of each variable in any specific "data" event

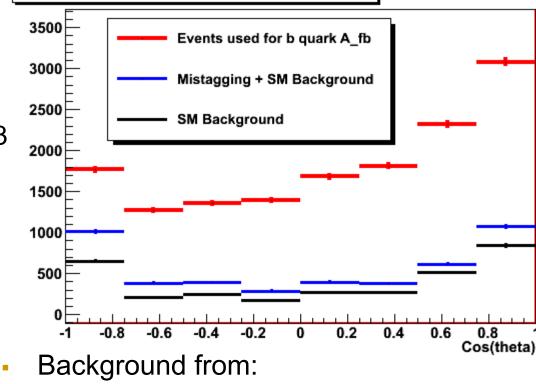

Multiplies the ratios of each variable considered.

Apply transformation to get a result between -1 and 1.

Method describe in: arXiv:hep-ex/0609034v1

Combined Charge b-bar quark

t and b quark A_{fb}



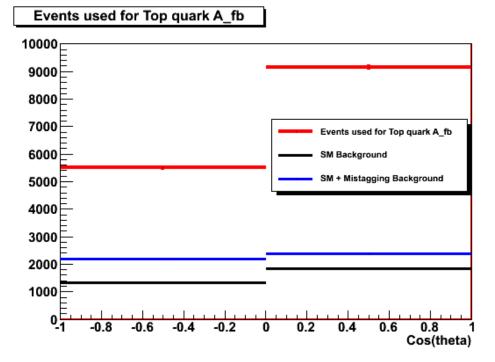
b quark A_{fb}

- Cut on combined charge
 - Charge_{Jet1} x Charge_{Jet2}<-0.3</p>
- Efficiency low: 7.1%
 - Events without secondary
 - B0/B0bar

Theoretical Prediction

	£	£	4	A + f		
	f_{2R}	f_{2L}	$A_{FB}, e^+e^- \text{ c.m.s.}$	A_{FB} , top frame		
	unpolynzed $e^+e^- \to t\mu\bar{\nu}_{\mu}b$					
\bar{b}	0.0	0.0	0.279	0.030		
\bar{b}	0.0	-0.2	0.243	0.010		
\overline{b} \overline{b}	0.0	-0.4	0.218	-0.004		
\bar{b}	0.0	-0.6	0.197	-0.020		
\bar{b}	0.0	-1.0	0.169	-0.039		
\bar{b}	-0.6	0.0	0.301	0.041		
\bar{b}	-1.0	0.0	0.315	0.045		
μ	0.0	0.0	0.079	-0.091		
μ	0.0	-0.6	0.085	-0.084		
	polarized $e_L^- e^+ \to t \mu \bar{\nu}_\mu \bar{b}$					
\overline{b}	0.0	0.0	0.354	0.100		
\bar{b}	0.0	-0.2	0.265	0.034		
\bar{b}	0.0	-0.4	0.200	-0.011		
\bar{b}	0.0	-0.6	0.152	-0.047		
\bar{b}	0.0	-1.0	0.087	-0.095		
μ	0.0	0.0	0.145	-0.262		
μ	0.0	-0.6	0.104	-0.233		

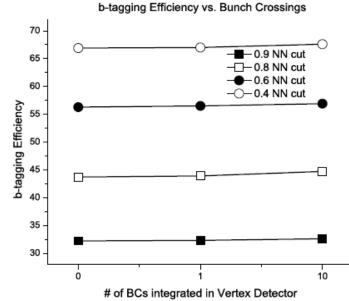
Events used for b quark A_fb


- Standard model
- b quark and charge mistagging

$$A_{FB} = \frac{\sigma(\theta < 90^\circ) - \sigma(\theta > 90^\circ)}{\sigma(\theta < 90^\circ) + \sigma(\theta > 90^\circ)}$$

Calculate A_{fb} : 0.272 ± 0.015 (stat)

t quark A_{fb}


- Same events as for b quark
- Complication associate b quark with the correct W jets.
- Use kinematic fitter for correct jet pairing

- Calculate A_{fb}: 0.342 ± 0.015 (stat)
- Compare with data at MC pre-reconstruction level: 0.351
- It is now possible to extract Wtb coupling (from b quark A_{fb}) and Ztt coupling (from t quark A_{fb}).

Effects of backgrounds

- Eventual goal of SiD is to have bunch-timing available in all subdetectors.
- In the interim, investigate the effect of adding the beam-generated backgrounds to the signal events.
- One in-time event added to ALL subdetectors, additional events added only to Vertex detector.

Analysis of signal + beam bckgrnd in progress.

Results

- Cross section = 287.1 ±1.4fb (stat)
- Top Mass = 173.918 ± 0.053 GeV(stat) curve fitting technique
- Top Mass Error = ± 0.038 (stat) template fitting technique
- A_{fb} b quark = 0.272 ± 0.015 (stat)
- A_{fb} t quark = 0.342 ± 0.015 (stat)