$e^{+}e^{-}HZ \quad H \rightarrow c\bar{c} \quad Z \rightarrow q\bar{q} \quad v \bar{v}$ $e^{+}e^{-}HZ \quad H \rightarrow \mu^{+}\mu^{-}Z \rightarrow q\bar{q} \quad v \bar{v}$ with the SiD

detector concept

Marcel Stanitzki

STFC-Rutherford Appleton Laboratory

The Benchmark processes

- $H \rightarrow cc$
 - Vertexing
 - Jet reconstruction
 - C-tagging performance
- $H \rightarrow \mu^+ \mu^-$
 - Sensitivity to rare decays
 - Tracking performance
 - Muon-ID

$\mathbf{H} \to \mathbf{C}\mathbf{C}$

- To dedicated Analyses
 - missing energy final state
 - 4 jet final state
- Both rely on c-tagging from LCFI-Vertex package
- Both use a Neural Network (NN) to perform the final event selection
 - One network to discriminate between SM background and Higgs production
 - One to separate $H \rightarrow cc$ from other Higgs decay modes

Typical events

LCFI Flavor tagging

Signal definition

SiD The missing energy channel

- Looking for
 - Dijet compatible with Higgs
 - Missing Mass compatible with Z
- Cuts
 - 20 < Jet P_T < 90 GeV
 - -log(y_{min})<0.8</pre>
 - N_{tracks} (Jet)>4
 - Thrust <0.95 and cos(Thrust)<0.98
 - 100 < Angle_{JetJet} 170°
 - 100 < m_{jetjet} < 140 GeV

NN variables

2D-View

The hadronic channel

10

- Looking for
 - Dijet compatible with Higgs
 - Dijet compatible with Z mass
 - Pairing using kinematic fitting
- Cuts

Science & Technology Facilities Council

Rutherford Appleton Laboratory

- -log(y_{min})<2.7</pre>
- N_{tracks} (Jet)>4
- Thrust <0.95 and cos(Thrust)<0.96
- 95 < m_{Higgs} < 145 GeV
- $45 < m_z < 105 \text{ GeV}$
- 75 < Angle_{Jet1Jet3} < 165
- 50 <Angle_{Jet2Jet4} < 150

NN variables

NN2 signal weighted

Network 2 Higgs \leftrightarrow H \rightarrow cc

Results

	Missing Energy	Hadronic
Sig. events	476	814
SM events	570	569
Higgs bk events	246	547
Signal efficiency	28%	47%
Signal σ	6.8±0.7 fb	6.9±0.4 fb
Br (H->cc)	3.3±0.4%	3.3±0.2%
ΔBr/Br	~ 11%	~ 6%

$H \rightarrow \mu^+ \mu^-$

- Two analyses
 - Hadronic channel
 - Missing energy channel
- Common Muon preselection
 - Select two high momentum muons
- Final mass selection
 - Based on combined χ^2
- Main difficulty
 - Only 18.5 events in total
 - Dominated by 4-fermion background

Typical Events

Selecting Muons

- Want two identified Muons
 - Following SiD-PFA Muon-ID
- Then we require the
 - Leading Muon E > 50 GeV
 - Second Muon E > 30 GeV
- 96 % efficient for signal
- Rejecting 99.7% of background

Defining the signal

The hadronic channel

- Preselection
 - $N_{_{Tracks}} > 5$, $E_{_{vis}} > 190 \ GeV$
 - Y_{cut}>0.05
 - $30 < E_{jet1} < 105 \text{ GeV}$
 - $10 < E_{jet2} < 70 \text{ GeV}$
 - P_{T jet1,2} <90, 60 GeV
 - Muon Mass Window 120 ± 20 GeV

Mass resolution

Using the Higgs signal sample after preselection Using all Events in Barrel and Endcap

Event shape selection

- Muon opening angle $\cos(\theta_{\mu\mu}) < -0.5$
- Angle between reconstructed bosons $\cos (\theta_{BB}) < -0.8$
- Muon isolation angle w.r.t closest Jet
 0.1 rad
- Boson Acoplanarity >2.8 rad

Results

- 7.66 Signal events
- 39.3 background events
- Cross section for $e^+e^- \rightarrow HZ \rightarrow \mu^+\mu^- q \bar{q}$
 - 0.074 ± 0.066 fb
- Remaining background

$$- e^+ e^- \rightarrow ZZ/Z \gamma \rightarrow \mu^+ \mu^- q \overline{q}$$

Missing Energy channel

- Starting off with ~ 4 events
- With 250 fb⁻¹ analysis has very limited reach
- Cut-based analysis is not sufficient
 - But need a lot more simulation for a NN
- A very quick check with FastMC looks promising
- Will pursuit this post-LoI

Outlook

- SiD is sensitive to this rare decay
- But
 - Need more MC to describe the tails
 - We are limited by available background simulation
 - Muon-ID could be made even better
 - Have plenty of ideas
- Stay tuned

Summary

- Studies based on Full simulation of SiD
- Big effort to produce all these samples
 - A Big thank you to the production team!
- Thanks to Y. Banda, T. Barklow and A. Nomerotski for comments and material.

