Status of Reference Network Simulations

John Dale TILC09 20 April 2009

Introduction

- Accelerator Alignment Concept
- Reference Network Simulations Model
 - Concept
 - Linearised model
 - Free network constraint
- Reference Network Simulation Results
 - Error Curves
 - Dispersion Matched Steering (DMS) results

Accelerator Alignment Concept

- Many possible ways to Align an Accelerator, the concept used here is:
 - Over lapping measurements of a network of reference markers using a device such as a laser tracker, stretched wires or LiCAS RTRS
 - Measurements of a small number of Primary Reference Markers (PRM) using, for example GPS transferred from the surface.
 - Combining all measurements in a linearised mathematical model to determine network marker positions
 - Using adjusted network to align Main Linac
 - Using Dispersion Matched Steering (DMS) to adjust correctors to minimise emittance

Reference Network Simulation Aims

- Generate ILC reference network solutions which can be used for LET simulations
- Easy to use
- Quickly (minutes not days)
- Correct statistical properties
- Capable of simulating existing as well as novel network
 measurement techniques

Possible Approaches

- Commercial survey adjustment software
 - Expensive
 - Need to be survey expert to use
 - Usually only use laser tracker/tachometers
- Full simulation of a specific device
 - Slow to generate networks
 - Restricted to one measurement technique
- Simplified Model
 - If designed correctly can be quick
 - Can be used to model novel devices

Simplified Model

- Have a device model
 - Measures small number of RMs e.g. 4
 - Moves on one RM each stop and repeats measurement
 - Determines vector difference between RMs
 - Vector difference smeared by input error
 - Knowledge of measurement procedure not necessary
 - Rotates around the X and Y axis
- PRM measurements
 - Vector difference measurements between PRM's
 - Measurements smeared by input error

The Linearised Model

- M device stops, N reference Markers Total, O PRMs Total, device measures 4 markers per stop
- Measurement Vector L
 - Contains device and PRM vector differences
- Measurement Covariance Matrix P
 - Simple diagonal matrix assuming no cross dependency on measurements
- Variables Vector X
 - Contains all the markers positions
- Prediction Vector F(X)
 - Predicts L
- Difference Vector W = F(X) L
- Design Matrix A = $\delta F(X)/\delta X$

The Linearised Model

 Normal Non-linear least squares minimises W^TW leading to an improvement of estimates given by

$$\Delta X = -(A^{T}PA)^{-1}A^{T}PW$$

• Problem A^TPA is singular and not invertible

• Model Requires Constraints.

Free Network Constraints

- Five constraints required
- Could constrain first point to be at (0,0,0) and both the rotations of first stop to be 0.
 - Gives zero error at one end and large error at other. Not the desired form
- Use a free network constraint
 - Technique developed in Geodesy
 - The free network constraint is that $X^T X$ is minimised.
 - If X^TX = min the trace of the output covariance matrix is also minimised
 - Equivalent to a generalised inverse
 - The least squares minimises W^TW and X^TX to give a unique solution

Free Network Constraint

- Break Up A^TPA into sub-matrices
 - N11 Must be non-singular
 - N22 size 5*5
- Leading to constraint Matrix A2

$$A^T P A = \left[\begin{array}{cc} N_{11} & N_{12} \\ N_{21} & N_{22} \end{array} \right]$$

$$A_2 = ((N_{11}^{-1}N_{12})^T - I)$$

- Improvement given by $\Delta X = \begin{bmatrix} A^T P A & A_2^T \\ A_2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} A^T P W \\ 0 \end{bmatrix}$
- Output Covariance matrix given by
 - Contains the errors on the RM positions

$$\Sigma_X = \left[\begin{array}{cc} A^T P A & A_2^T \\ A_2 & 0 \end{array} \right]^{-1}$$

• Note ΔX and Σ_X are longer than X, but extra elements are zero.

Model Summary

- Input
 - Device Measurement Errors
 - Number RMs measured by device in one stop
 - PRM Measurement Errors
 - Network Parameters
 - Number RMs, Number PRMS, RM spaceing, PRM spacing
- Output
 - Reference marker position difference from truth
 - Reference marker position statistical error

Laser Tracker Network Simulation

- Test model by comparing to laser tracker network
- Can simulate ILC laser tracker networks using PANDA
- Use PANDA output to determine model parameters
 - minimising the difference between the PANDA statistical errors and the model statistical errors
 - Minimiser can adjust the model input parameters
 - minisation using JMinuit
- minisation done for networks with and without PRMs

Error Curve Comparison

- Use Model to generate laser tracker measured network without PRM's
- Model used to produce network with the following parameters
 - No markers = 500
 - Space between markers = 25m
 - $-\sigma x = 7.2192622E-5$
 - $-\sigma y = 7.1554098E-5$
 - $-\sigma z = 3.0863441E-5$

Error Curve Comparison

- Use Model to generate laser tracker measured network with PRM's
- Model used to produce network using the following parameters
 - No markers = 500
 - Space between markers = 25m
 - No PRM's = 6
 - Space between PRM's = 2500m
 - $-\sigma x = 8.0791025E-05$
 - $-\sigma y = 7.9445123E-05$
 - $-\sigma z = 3.0896634E-05$
 - $\sigma GPS = 9.3551598E-03$

Simulation of DMS using Merlin

- DMS simulations using Merlin (a C++ based library for particle tracking)
- The Merlin based ILCDFS package
 - Is performing the tracking through the curved main linac (positron side)
 - It has implementation of the Beam Based Alignment method based on Dispersion Matched Steering
- Dispersion Matched Steering (DMS)
 - Attempts to locally correct the dispersion caused by alignment errors in magnets and other accelerator components.
 - Adjusts correctors to bring dispersion to its nominal value and preserve the emittance along the Main Linac (ML)
 - Parameters used here
 - Starting emittance 20nm
 - A nominal beam starting energy $15 \text{GeV} \rightarrow 250 \text{Gev}$ at exit
 - Initial energy of test beam is 20% of nominal beam
 - Constant gradient adjustment of -20%

DMS Simulations for Laser trackers

- 100 networks generated without PRMs using PANDA and the model
- 10 DMS simulations performed on each network using Merlin
- Note: PANDA results are revised compared to LCWS 2008
 Model PANDA

DMS Simulations for Laser trackers

- 100 networks generated with PRMs using PANDA and the model
- 10 DMS simulations performed on each network using Merlin
- Note: PANDA results are revised compared to LCWS 2008

Model

PANDA

Conclusion

 Model works without Primary Reference Markers

 Implementation of Primary Reference Markers needs improvement

 Laser tracker network not suitable for the ILC as only 42% of machines below 30 nm

Future Work

• Fix GPS problem in model

Determine LiCAS Model Parameters

Introduce systematics

Verify DMS results using different code