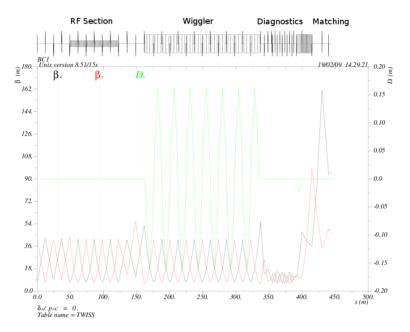
# Single Stage Bunch Compressor Studies

Andrea Latina (FNAL)

April 20, 2009


**GDE** Main Linac & Beam Dynamics

- Description of BC1S and Update
- Beam Dynamics Simulations
- Conclusions and Work Plan

## **BC1S Optics and General Description**

• Based on the original design at 5 GeV by PT in April 2005:

http://www-project.slac.stanford.edu/ilc/acceldev/LET/BC/OneStageBC.html



- six cryomodules for RF acceleration

- 6-cells Raubenheimer-type wiggler: a single bend magnet between quads in a 6-cells FODO lattice

- $\Rightarrow$  NEW sections added:
  - (1) beam **diagnostics** and **extraction** adapted from BC2 (extraction line to be taken from  $BC1 \Rightarrow$  shorter)
  - (2) pre-linac to rise the energy from 5 to 15 GeV

# **BC1S Single Stage Schematics**

- AHEAD : turnaround, spin rotator, emittance measurement station, beam diagnostics
- BC1S is composed by the following consecutive parts
  - BC0 : entrance
  - BC1 RF : RF section, 6 CM, 48 accelerating structures,  $\sim$  75 meters
  - BC1 RF2WIG : matching section from RF to wiggler
  - BC1 WIGGLER : 6-cells,  $\sim$  24 meters long each
  - BC1WIG2DIAG : matching section to diagnostics
  - BC2 DIAG : 4 laserwires, phase monitor, bunch length monitor (LOLA cavity)
  - BC2 ML\_1 : kickers to the extraction line
  - BC2\_ML\_2 : matching section to main linac FODO
  - BC1PRELINAC : accelerating section from 5 to 15 GeV, adapted from ML ILC2007b

 $\Rightarrow$  Total length is now : 896.34 m

## **Design Characteristics**

• The beam properties at injection are:

```
Charge2e10 (3.2 nC)Energy5 GeVEnergy spread0.15% (actually 0.13% from Damping Ring)Bunch Length6 mm
```

• Properties of the bunch compressor are:

| Integrated voltage      | 1275.2 MV @ 1.3 GHz                                     |
|-------------------------|---------------------------------------------------------|
| Cavity gradient         | ≈25.6 MV/m                                              |
| Accelerating Structures | 48 (6 cryomodules; old-type : quadrupole is at the END) |
| Phase                   | -119.5 degrees                                          |
| Energy Loss             | 627.9 MeV                                               |
| $R_{56}$                | -147.5 mm                                               |
| Total length            | ~433 m (~423)                                           |

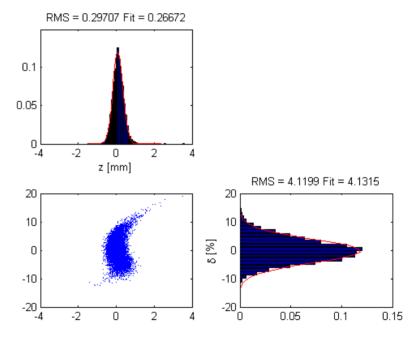
- Pre-Linac Acceleration: 36 CM, same structures used in the ML
- $\Rightarrow$  Desired final bunch length : 0.3 mm
- $\Rightarrow$  Desired energy spread at ML entrance (baseline): 1.07%

#### BC1S vs BC1+BC2

BC1S: total length = 896.34 m ( $\sim$ 886 m with 10 m shorter EXT-LINE)

| BC1STAGE       | number                   | unit | total         |
|----------------|--------------------------|------|---------------|
| units          | 2                        | -    | 2             |
| gradient       | 25.6 MV/m                | -    | -             |
| cryo-modules   | $2 \times (CMQ-CMQ-CMQ)$ | -    | 6             |
| quadrupoles    | 45                       | -    | 45            |
| bpms           | 45                       | -    | 45            |
| acc structures | 2×(8+8+8)                | -    | 48            |
| length         | 433.37                   | m    | 433.37 (~423) |

| BC1S_PRELINAC  | number                  | unit | total  |
|----------------|-------------------------|------|--------|
| units          | 12                      | -    | 12     |
| gradient       | 31.5 MV/m               | -    | -      |
| cryo-modules   | $12 \times (CM-CMQ-CM)$ | -    | 36     |
| quadrupoles    | 12                      | -    | 12     |
| bpms           | 12                      | -    | 12     |
| acc structures | $12 \times (9 + 8 + 9)$ | -    | 312    |
| length         | 462.97                  | m    | 462.97 |


#### BC1+BC2: total length = 1093.5 m $\,$

| BC1            | number        | unit | total |
|----------------|---------------|------|-------|
| units          | 1             | -    | 1     |
| gradient       | 18.0 MV/m     | -    | -     |
| cryo-modules   | (CMQ-CMQ-CMQ) | -    | 3     |
| quadrupoles    | 29            | -    | 29    |
| bpms           | 27            | -    | 27    |
| acc structures | (8+8+8)       | -    | 24    |
| length         | 221.8         | m    | 221.8 |

| BC2            | number                  | unit | total  |
|----------------|-------------------------|------|--------|
| units          | 15                      | -    | 15     |
| gradient       | 30.2 MV/m               | -    | -      |
| cryo-modules   | $15 \times (CM-CMQ-CM)$ | -    | 45     |
| quadrupoles    | 29                      | -    | 29     |
| bpms           | 27                      | -    | 27     |
| acc structures | $15 \times (9 + 8 + 9)$ | -    | 390    |
| length         | 871.66                  | m    | 871.66 |

# Design Beam Profile

- Nominal beam parameters at exit
  - blength = 266  $\mu {\rm m}$
  - energy = 4.3797 GeV
  - espread = 4.13 %
- $\Rightarrow$  espread @ 15 GeV  $\simeq$  1.2%



 $\Rightarrow$  Notice that the nominal value of the energy spread at the entrance of the ML is 1.07%

## Beam Profile Optimization

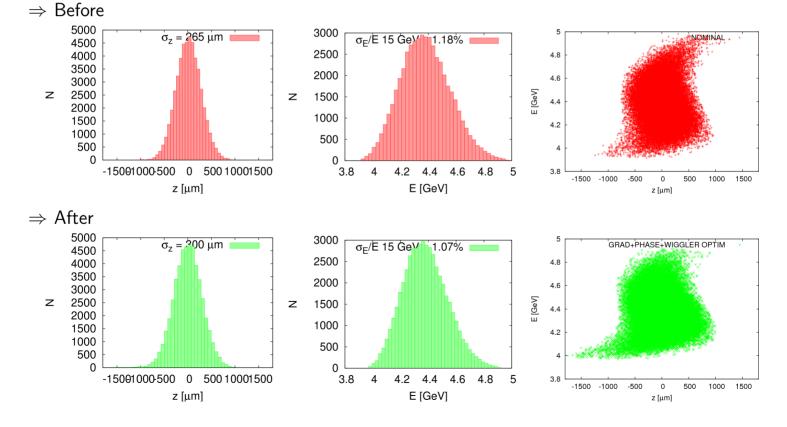
- Nominal beam parameters at exit
  - blength = 266  $\mu {
    m m}$   $\Rightarrow$  we would like 300  $\mu {
    m m}$
  - energy = 4.3797 GeV
  - espread = 4.13 %
  - espread @ 15 GeV = 1.2 %  $\Rightarrow$  we would like 1.07 %
  - $\Rightarrow$  300  $\mu{\rm m}$  and 1.07 % correspond to the beam parameters for the baseline design
- Cavities' phase and gradient as well as wiggler's  $R_{56}$  were scanned to optimize the beam profile at the entrance of the main linac
- Optimization was run to match the following characteristics:
  - 1. 300  $\mu$ m bunch length
  - 2. 1.07% energy spread
  - 3. minimal correlation coefficient in the longitudinal phase space E-z
- $\Rightarrow$  Simplex on rf gradient (1), rf phase (2), wiggler angle ( $R_{56}$ ) (3) to minimize:

$$M = \left(1 - \frac{\Delta E/E}{1.07\%}\right)^2 + \left(1 - \frac{\sigma_z}{300\mu m}\right)^2 + 10 \cdot \text{corrcoeff}(\{E\}, \{z\})^2$$

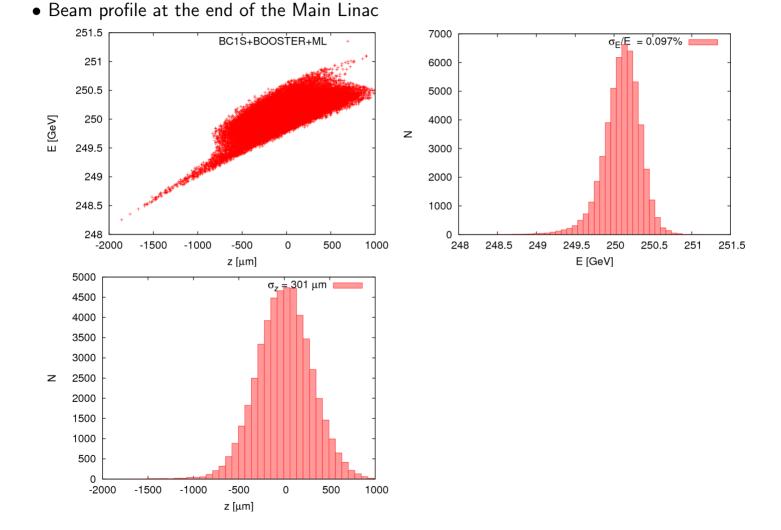
#### Beam Profile Optimization Results

- Initial Parameters
  - gradient = 25.6 MV/m
  - espread = 0.15 %
  - blength = 6 mm
  - wiggler angle = 0.03935 rad

- Nominal exit parameters
  - blength = 268.88  $\mu {\rm m}$
  - energy = 4.3797 GeV
  - espread = 4.13 %
  - espread @ 5 GeV = 3.6 %

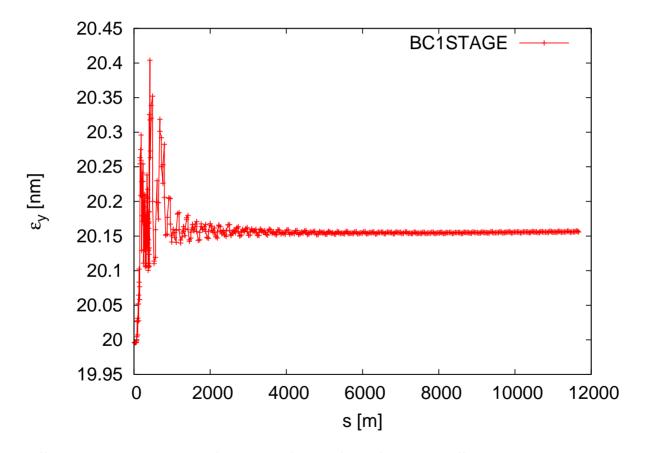

- $\Rightarrow \mathsf{Optimization}\ 1$ 
  - wiggler not changed
  - blength = 301.18  $\mu {
    m m}$
  - energy = 4.2897 GeV
  - rf gradient = 25.517 MV/m
  - rf phase = -124.45
  - espread = 3.88789 %
  - espread @ 5 GeV = 3.33559 %
  - espread @ 15 GeV = 1.11 %

- $\Rightarrow$  Optimization 2
  - blength = 301.20  $\mu \rm{m}$
  - energy = 4.4143 GeV
  - rf gradient = 23.580 MV/m
  - rf phase = -122.38
  - wiggler angle = 0.042207 rad
  - espread = 3.5452 %
  - espread @ 5 GeV = 3.12989 %
  - espread @ 15 GeV = 1.07 %


#### Longitudinal Phase Space Before and After Optimization

- Before optimization
  - Bunch length = 265  $\mu$ m
  - energy spread = 4.13 %
  - energy spread @ 15 GeV = 1.18 %

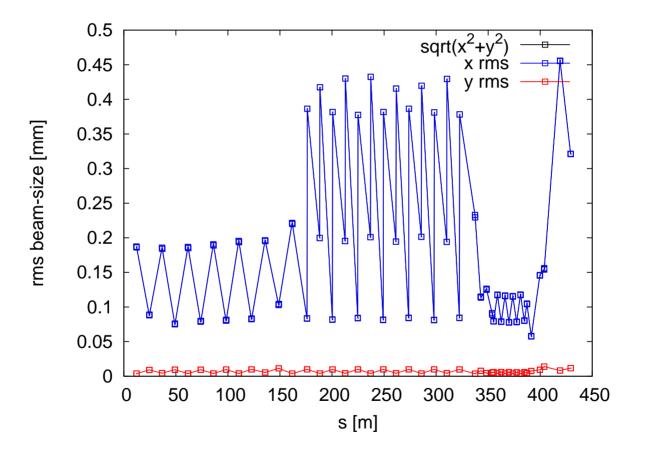
- After optimization
  - Bunch length = 300  $\mu m$
  - energy spread = 3.54 %
  - energy spread @ 15 GeV = 1.07 %




## Particle Tracking with Placet



#### Particle Tracking Using Placet






 $\Rightarrow$  Practically no emittance growth  $\Rightarrow$  good matching between all sections

#### Particle Tracking Using Placet

• Beam sizes along BC1S



## Conclusions and Work Plan

- Replace the current Wiggler with the schema presented by *Seletskiy, Tenenbaum* at PAC 2007
  - they have equivalent cell length (  $\sim$  24 meters) but,
  - at cost of more elements, the new schema allows more flexibility:
  - skew quadrupoles, coupling correction, ...
- Replace the crymodules with new design
- See my following talk for more beam dynamics in BC1S... (alignment and couplers)