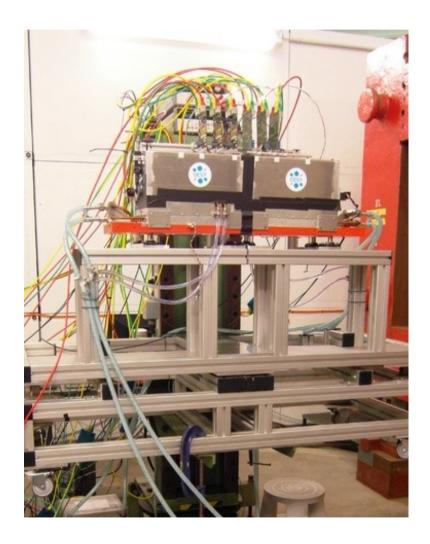
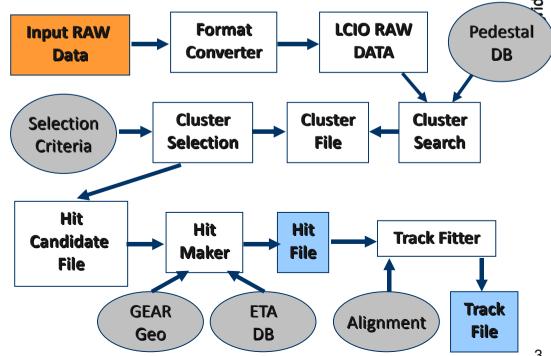
LCIO-based Data Processing

Experiences from the test-beam pit

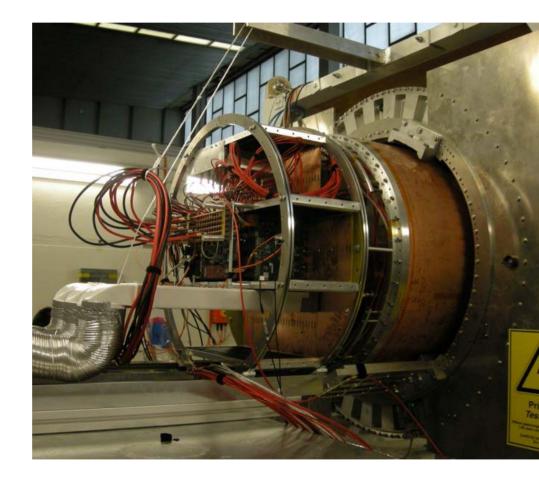
Niels Meyer, DESY ILD Software Meeting, KEK April 16, 2009



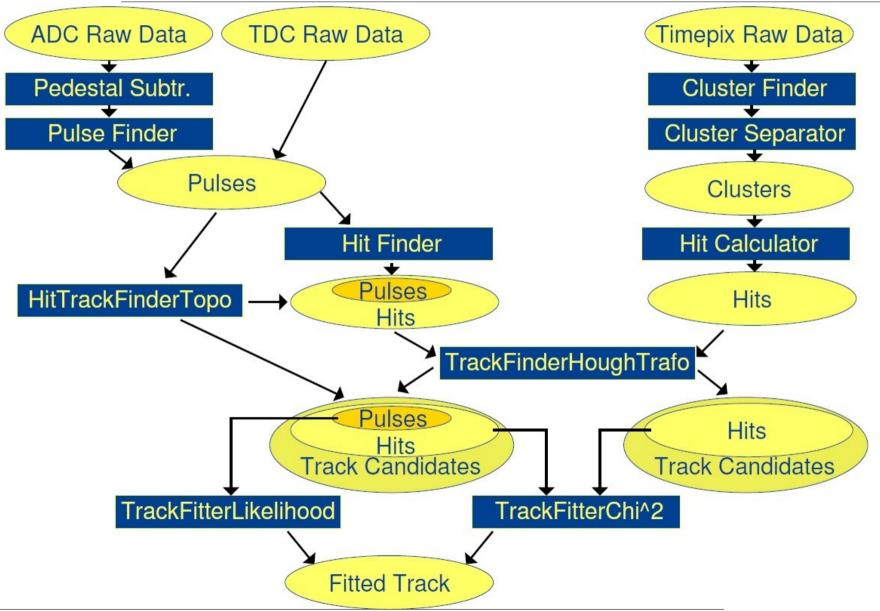
EU Pixel Telescope


- Vertex detector prototype, position monitor for test-beam setups
- One technology, one team
- Provided to users, so aim is to have automated, easy-touse reconstruction software
- European effort

Analysis and reconstruction software

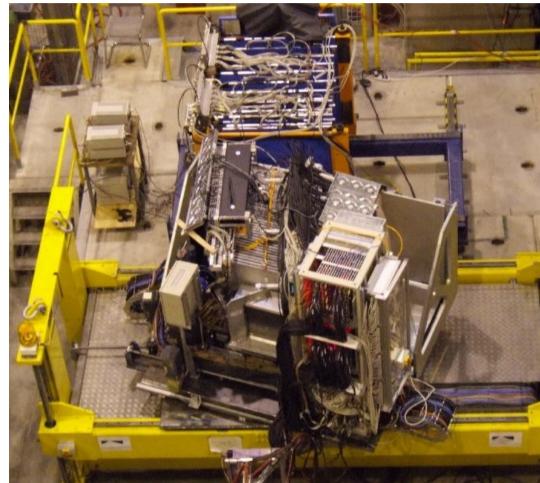

- Gain as much as possible from past experience and already available and tested software tools:
 - Single sensor analysis \rightarrow sucimaPix (INFN)
 - Eta function correction \rightarrow **MAF** (IPHC)
 - Track fitting \rightarrow **Analytical track fitting** and straight line fitting
 - Alignment → Millepede II
 - Framework \rightarrow ILC Core software = Marlin + LCIO + GEAR + (R)AIDA + CED (+ LCCD).

- Each module is implemented in a Marlin processor
- execute all of them together, or stop after every single step
- Advantages when debugging the system
- Can offer the user different level of information

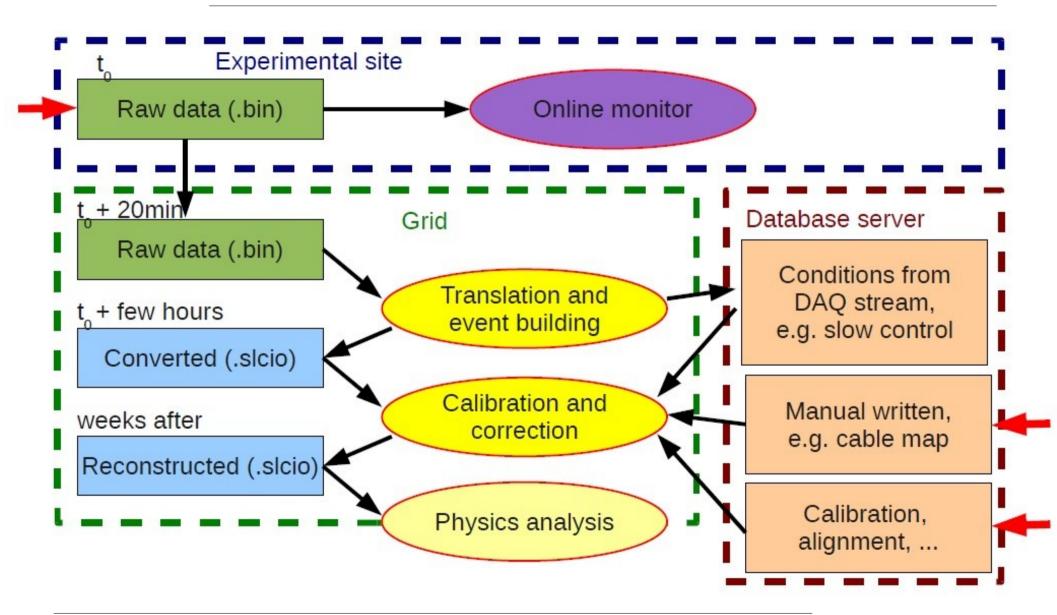


LC-TPC Large Prototype

- Main tracker prototype including magnetic field
- Back-plane for various readout technologies, collaborated effort
- Complex set of conditions information (electronic and surrounding)
- Inter-regional effort



MarlinTPC



CALICE Calorimeter Setup

- Calorimeter prototypes for hadronic shower measurements
- So far four different detectors, more to come, collaborated structure
- Large data volume, large number of channels, complex conditions data, non-trivial geometry
- Inter-regional and interconcept effort

CALICE Data Flow

Software Coordinates

- All three R&D collaborations use the LDC scheme:
 - > Implementations in C++
 - LCIO as data model and for data storage
 - Marlin for data processing
 - LCCD as interface to conditions data
 - MOKKA as interface to Geant4
- EU Telescope and LC-TPC also use GEAR for geometry description, CALICE has own model
- CALICE has decided to continue using this scheme also for non-European detectors (SciECal from Japan, DHCal from North America)

Private Comments - LCIO

- Most operations do not process all informations of an event. For these cases, the current I/O implementation is sub-optimal. Does not make a difference for mass-reconstruction, but for user analysis.
- Shortcommings in integration of user-defined classes (via LCGenericObjects)
 - Original class lost after storage/re-read, bears danger of confusing different objects with identical size
 - Often hardware-related configuration- or read-out blocks, so not of general interest for full portability

Private Comments - Marlin

 Marlin provides 'loop over events' to encapsulate modulare processing steps. Also processings on individual objects could be modularized. Second loop level (over one collection) of general use?

Private Comments - LCCD

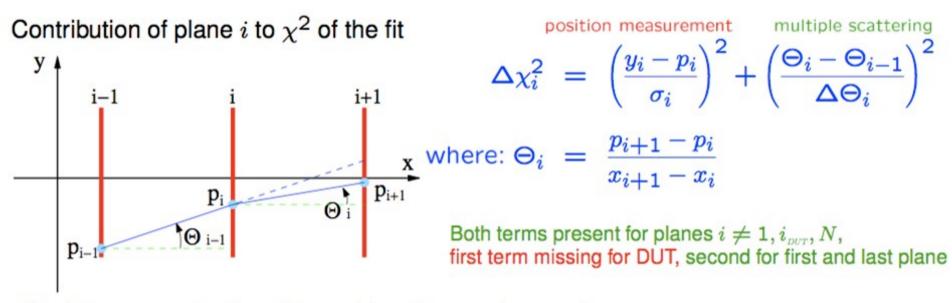
- In principle, the LCIO/Marlin *concept* is threat-save if it was not for the change listener pattern for conditions handling. Is there a better way, e.g. by 'collection has changed'-flags?
- The only available database implementation for LCCD is based on (non-maintained) CondDBMySQL. How to provide 'code reliability' here? Who takes care of fixes, e.g. removing I/O overhead to DB server?
- Scalability: Conditions for full scale detector will be huge (current HCal calib: ~35 floats per channel).
 Need clever memory ⇔ CPU ⇔ I/O balancing in the future, preferably steerable.

Private Comments - Geometry

- GEAR currently simulation-driven: geometry defined in MOKKA, fed to reconstruction by XML file - this is not a useful ansatz for test beam setups (which are very flexible) and most probably also not for a full-scale detector
- Geometry data is also conditions data, some change with time (alignment), others are fixed relations (blue-prints) natural would be LCCD-based handling
- Would want to have something that is (from the code point of view) identical in simulation and reconstruction

Backup Slides

EUTelescope


- UTelescope Providing the users a set of relevant high level objects (like tracks or space points) to characterize the DUT along with histograms of important figures of merit. Collaborating in the development of a common software framework in view of the future International Linear Collider experiment. Developed within the Software
- **Developed** within the Software Networking activity, it is based on the official ILC framework: Marlin + **LCIO**
- **EUTelescope is a set of Processors** taking to care to handle the data stream from the DAQ to the reconstructed tracks
- Sticking to the ILC de-facto standard offers the possibility to easily use the GRID.

🕹 EUTelescope - Mozilla Firefox <2>	_ — ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew History <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	antonio.bulgheroni - 🔅
 	Google 🔍 🚇 🗸
🕅 Gmail 📄 Vodafone 📴 unico-lab 🗁 ILC Software 🗁 C++ programming 🚞 Negozi ((on line) 📋 Serie TV
Main Page Namespaces Classes Files Directories Related Pages Searc	h for
EUTelescope	,
v00-00-06	
Welcome to the EUTelescope documentation server. This is the place where you can find all the explanation and the examples you may need to run the EUTelescope processors within Marlin.	
If you know already something about this software project, then you can browse the documentation clicking on the button above or putting a keyword in the search field in top right corner of this page.	
If you feel you don't know enough on the EUTelescope then we encourage you take have a look at the following pages:	
Introduction	
The preparation steps	
• The analysis chain	
Download and installation	
If those information are not yet enough, consider contact us on the Linear Collider Forum.	
Generated on Fri Nov 9 12:33:23 20	007 by
Done	🐺 M O toto

Analysis Method

Track Fitting

- Want to determine track position in each plane (including DUT), i.e. N parameters (pix i=1...N) from N-1 measured positions in telescope planes
- Use constraints on multiple scattering

 χ^2 minimum can be found by solving the matrix equation.

• As a by product we get also an expected error on the position reconstructed at DUT.