Tau Polarization Study by SiD

Tim Barklow, Ron Cassell (SLAC) Ray Cowan (MIT) Subhendu Chakrabarti (SUNY Stonybrook) Apr 18, 2009

Tau selection and background

- Event cuts: 2-6 tracks, 40<Evis<450 GeV
- Tau jet clustering, 2 jets, each $\cos\theta < .95$
- Opening angle > 178 degrees
- Eliminate events with both mu or both e
- Selects 17.9% of all tau pairs, 72% of minE > 240
- Background from other SM 2.4%

Tau pair cross section and A_{FB}

The selected sample of mostly full energy taus is used to measure the tau pair cross section and A_{FB} at $\sqrt{s} = 500$ GeV.

The total cross section precision is 0.28%.

 A_{FB} was measured by fitting the tau $\cos\theta$ distribution to $\frac{d\sigma}{d\cos\theta} \propto 1 + \cos^2\theta + \frac{8}{3}\cos\theta$

 $A_{FB} = 0.5038 \pm 0.0021 \text{ for } 250 \text{ fb}^{-1} \text{ with } e^{-}(80\% L) e^{+}(30\% R)$ $A_{FB} = 0.4704 \pm 0.0024 \text{ for } 250 \text{ fb}^{-1} \text{ with } e^{-}(80\% R) e^{+}(30\% L)$

Decay mode selection using modification of SiD pfa

decay mode	$\# \gamma$	$\# \pi^0$	EPcut	other criteria	
$e^- \bar{\nu_e} \nu_{\tau}$	0	0	-	HCAL energy $< 4\%$ of track energy.	
$\mu^- \bar{ u_\mu} u_ au$	0	0	_	identified as μ by PFA	
$\pi^- \nu_{ au}$	0	0	2.5	-	
$ ho^- u_ au o \pi^- \pi^0 u_ au$	1	0	2.2	$0.6~{ m GeV} < M_{ ho} < 0.937~{ m GeV}, ~~E_{\gamma} > 10~{ m GeV}$	
$ ho^- u_ au o \pi^- \pi^0 u_ au$	2	1	2.2	$0.4~{\rm GeV} < M_{\rho} < 0.93~{\rm GeV}$	
$a_1^- u_ au o \pi^- \pi^0 \pi^0 u_ au$	3	1	2.2	$0.8~{\rm GeV} < M_{a_1} < 1.5~{\rm GeV}, \ \ E_{\gamma} > 10~{\rm GeV}$	
$a_1^- u_ au o \pi^- \pi^0 \pi^0 u_ au$	4	2	2.2	$0.8 \text{ GeV} < M_{a_1} < 1.5 \text{ GeV}$	
$a_1^- u_ au o \pi^- \pi^+ \pi^- u_ au$	0	0	2.5	$0.8 \text{ GeV} < M_{a_1} < 1.7 \text{ GeV}$	

Decay mode purity and efficiency

decay mode	Correct ID	Wrong ID	ID eff	ID purity	SM bgnd
$e^- \bar{\nu_e} \nu_{\tau}$	39602	920	0.991	0.977	1703
$\mu^- \bar{\nu_\mu} \nu_\tau$	39561	439	0.993	0.989	1436
$\pi^- \nu_{\tau}$	28876	2612	0.933	0.917	516
$\rho^- \nu_\tau \to \pi^- \pi^0 \nu_\tau$	55931	8094	0.790	0.874	1054
$a_1^- \nu_\tau \to \pi^- \pi^0 \pi^0 \nu_\tau$	18259	11140	0.732	0.621	847
$a_1^- \nu_\tau \to \pi^- \pi^+ \pi^- \nu_\tau$	21579	2275	0.914	0.905	141

Rho reconstruction

5

Θ^* = angle between rho and tau in tau rest frame

(Reconstructed - MC) cos(8*)

6

β = angle between pi+- in rho rest frame

80eR tau -> rho nu

80eR tau -> rho nu

Tau polarization measurement

The mean tau polarization $\langle P_{\tau} \rangle$ over all tau production angle is measured

All channels except the a_1 were used.

The optimal observable method was used where the optimal observable $\omega = \frac{E_{\text{track}}}{E_{\text{beam}}}$ for e, μ , and single pion decays. For the

rho the optimal observable ω is a complicated function of the angles of the rho and charged pion in the tau and rho rest frames, respectively.

 Θ^* = angle between pi and tau in tau rest frame

80eR tau -> pi nu

80eL tau -> pi nu

80eR tau -> pi nu

80eL tau -> pi nu

ω = optimal observable

80eR tau -> rho nu

80eL tau -> rho nu

80eR tau -> rho nu

80eL tau -> rho nu

Tau polarization precision

The average polarization $\langle P_{\tau} \rangle$ is measured separately for initial electron and positron polarization combinations of $e^{-}(80\% L) e^{+}(30\% R)$ and $e^{-}(80\% R) e^{+}(30\% L)$ In the Standard Model the true tree-level values at \sqrt{s} =500 GeV are $\langle P_{\tau} \rangle$ = -0.626 and +0.528 for $e^{-}(80\% L) e^{+}(30\% R)$ and $e^{-}(80\% R) e^{+}(30\% L)$ respectively.

A linear least squares fit of $\langle P_{\tau} \rangle$ over all the bins of all the reconstructed ω distributions is used to measure $\langle P_{\tau} \rangle$. The Monte Carlo sample is divided in half with one half used for training and the other for testing. The results:

 $< P_{\tau} >= -0.611 \pm 0.009 \text{ stat.} \pm 0.005 \text{ sys.}$ for 250 fb⁻¹ with $e^{-}(80\% L) e^{+}(30\% R)$ $< P_{\tau} >= +0.501 \pm 0.010 \text{ stat.} \pm 0.006 \text{ sys.}$ for 250 fb⁻¹ with $e^{-}(80\% R) e^{+}(30\% L)$ The systematic errors are due to the finite training sample statistics.

Summary

- Using a modified version of the SiD pfa, good tau decay mode identification efficiency and purity can be achieved for 250 GeV taus for all the dominant decay modes.
- Using all decays except the a_1 an absolute statistical precision of 0.01 can be achieved for the mean tau polarization of 250 GeV taus for a 250 fb⁻¹ sample.
- Future work would include further improvements of the decay mode id, and incorporation of the a₁ into the tau polarization analysis