Feasibility study of Higgs pair creation in gamma-gamma collider

Hiroshima University Nozomi Maeda TILC09@Tsukuba 19.April 2009

PLC in ILC

Measurement of basic physical quantity of Higgs at PLC has been studied. e.g.) the two photon decay width of Higgs.

We study feasibility of mesurement of rare process at PLC.

2. λ contribution to cross section is different.

 \rightarrow Can PLC measure Higgs self-coupling constant λ ?

Simulation Framework

Luminosity spectrum

/cm²/s/bin)

dL/dW (10³³

6

0

Ο

45

90

140

180

230

(GeV)

Ee[GeV]	190	
N/10 ¹⁰	2	
σ _z [mm]	0.35	
$\gamma\epsilon_{x/y}/10^{-6} [{\rm m\ rad}]$	2.5/0.03	
$\beta_{x/y}[mm]@IF$	1.5/0.3	
$\sigma_{x/y}[nm]$	96/4.7	
$\lambda_{\rm L}[nm]$	1054	
Pulse energy [J]	10	
$x = 4\omega E_e/m_e^2$	3.76	
$\beta_{x/y}[mm]@IF$ $\sigma_{x/y}[nm]$ $\lambda_{L}[nm]$ Pulse energy [J] $x = 4\omega E_{e}/m_{e}^{2}$	1.5/0.3 96/4.7 1054 10 3.76	

total luminosity of photon collision $= 1.26 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

effective cross section(Signal)

= 0.013fb $\rightarrow 16$ event/year

effective cross section(BG)

360

270

320

= 11,600fb \rightarrow 1.467×10⁷event/year

 $\eta_{\rm B}$ < 10⁻⁶ is required.

Analysis

Signal : γγ->HH
 Background : γγ->WW
 H -> bB or WW* or gg
 W -> ud or cs or ev
 choose HH->4b(Branching ratio = 0.43).

background:WW->4quark

 \rightarrow reconstruct particles, and try to distinguish them.

Event reconstruction

choose 2jets from 4jets, and reconstruct Higgs(or W-boson) from this 2jets.

 \rightarrow 3 combinations for 1event.

 \rightarrow choose a combination that has the smallest χ^2 .

$$\chi^{2} = \frac{(M_{1} - M)^{2}}{\sigma_{2j}^{2}} + \frac{(M_{2} - M)^{2}}{\sigma_{2j}^{2}}$$

 $\begin{array}{ll} M_1,\ M_2 = reconstructed\ particle\ mass\\ M = M_H\ or\ M_W \quad \sigma_{2j} = 2 jets\ mass\ resolution \end{array}$

b-tagging by simulation

We tried to b-tagging by simulation. nsig method was used.

 \rightarrow define the jet that has a certain noffv as b-jet.

b-tagging by simulationDefinitionIoose b-tag : nsig = 3, noffv = 1tight b-tag : nsig = 3, noffv = 2

 \aleph charm quark is generated by W->cs only.

Event selection

condition	# of BG	# of Signal
nocut	10,000,000	50,000
# of jets = 4	8.09E+06	4.97E+04
# of loose b-tagged jets = 4	923	1.62E+04
# of tight b-tagged jets ≧ 3	135	1.33E+04
χ2(H) < 18	12	1.03E+04
$\chi^2(W) > 5$	2	9.15E+03
maximum charged particle energy \geqq 2GeV	0	6.60E+03

Background : 10,000,000event -> 0event

Signal : 50,000event -> 6,607event

If Rusidians of 1320 years...

16events/year×10years×0.132 = 21events \rightarrow 4.6 σ

Summary

- We study feasibility of measurement of Higgs selfcoupling constant λ at PLC.
- If Higgs mass = 120GeV, optimized photon collision energy is 270GeV.
- No. of Signal event is expected 16events/year with PLC parameter(TESLA optimistic).
- Selection by b-tagging and kinematics parameters can suppress almost γγ->WW.
- $\gamma\gamma$ ->HH can be observed with 4.6 σ in 10 years.
- Next plan, consider HH->bBWW*(B.R.=0.18).

Thank you for your attention.

backup b-tagging by simulation

loose : nsig=3, noffv=1 # of b-tagged jets = 4, $\eta_{BG} = 9.23 \times 10^{-5} \eta_{Signal}$ = 0.324

tight : nsig=3, noffv=2 # of b-tagged jets = 4, $\eta_{BG} = 1.50 \times 10^{-6}$ η_{Signal} = 0.161

Event selection

b-tagging by simulation

We tried to b-tagging by simulation. nsig method was used.

nsig method

assuming the distance between tracks and IP, L and the measurement error, σ_{L}

define the track as "off vertex track" if L/σ_L is over a certain value(nsig).

define the jet as b-jet if the number of "off vertex tracks" in a jet is over a certain value(noffv).

Probability of miss identify for charm quark is the highest in b-tagging.