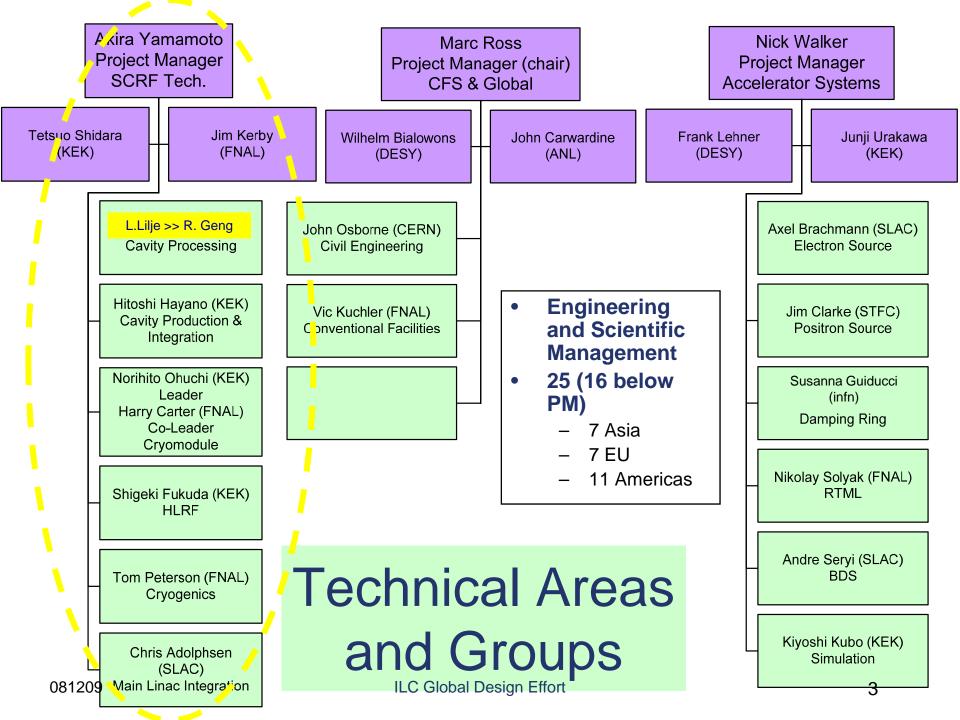


AAP Review – SCRF

Introduction

Akira Yamamoto Project Manager, SCRF


To be presented, April 19, 2009

2009.4.19

AAP-SCRF-Introduction

SCRF Cavity Major Goals

High-gradient cavity performance at 35 MV/m according to the specified chemical process with a yield of 50% in TDP1, and with a production yield of 90% in TDP2	2010 2012
 Nominal Cryomodule design to be optimized: plug-compatible design including tune-ability and maintainability thermal balance and cryogenics operation beam dynamics (addressing issues such as orientation and alignment) 	2009
Cavity-string performance in one cryomodule with the average gradient 31.5 MV based on a global effort (S1 and S1-global)	2010
An ILC accelerator unit, consisting of three cryomodules powered by one RF unit, with achieving the average gradient 31.5 MV/m (S2)	2012

Context Give by AAP

 SCRF What is the path to finalizing the gradient choice? Current experimental status Established standards 	Context
 Extrapolation of results Time limitations 	
Decision process	
 Role of plug compatibility in this process 	
What is the path towards industrialization?	Context
 Current experimental status 	
 Established standards 	
 Extrapolation of results 	
 Internationalization of efforts 	
 Outline tendering process 	
 Role of Plug compatibility 	
 Lessons expected from systems tests 	Context
FLASH	
 Operational limitations of ILC cavities 	
ILC like mode	
Long bunch	
— High charge — High gradient	
 Experience and characterization of implications for ILC 	
Other facilities foreseen	
Timelines	

Benefits

ic AAP Review Context for SCRF

Context	Charge	Note
 What is the path to finalizing the gradient choice? Current Experimental status Established standards, and Extrapolation of results Role of "plug-compatibility", in R&D stage Time (limitation) and Decision Process 	L. Lilje M. Champion H. Hayano R. Geng A. Yamamoto	SO
 What is the path toward industrialization? Current experimental status Established standards, and extrapolation of results Internationalization of efforts, Outline tendering process Role of Plug-compatibility, in Production Stage 	N. Ohuchi P. Perini D. Mitchell <u>H. Hayano</u> C. Pagani J. Kerby <u>A. Yamamoto</u>	S1/S 2
 Lesson expected from system test FLASH at DESY (operational limitation of ILC cavities) STF at KEK, time-line and benefit NMF at FNAL: time-line and benefit 	(J. Cawardine) <u>H. Hayano</u> <u>M. Champion</u>	S2

Response from AAP for SCRF

The SRF R&D started with a well-laid out international R&D plan, which required the intricate interaction of the participating laboratories already in the phase of the Reference Design Report. Goals defined during that phase have been elaborated in an often demanding decision process. Naturally, as time went on priorities shifted and so did the R&D activities. How did and does the process affect the readiness for the decision process of the gradient? What level of confidence can be reached in the various technical areas?

It would be beneficial for the committee to have a short introductory review of the critical R&D gradient goals for TDP 1 and 2 and their timelines, with mention of targets for number of cycles/number of cavities, and number of cryomodules, as laid out in the TDP document. The status report should cover activities in both cavity and cryomodule gradients. On the continuing R&D Plan, there is a need to discuss fully how the gaps between the current status for cavity gradients and the goals for TDP phases 1 and 2 will be addressed. For example:

İİİ

ic Specific Questions by AAP

Specific Questions	To be reponded/answ ered by:
•What are the sources of present limitations in gradient yields due to preparation processes?	L. Lilje
 What approaches are underway to increase the process yield? 	L. Lilje
 How will sufficient number of cycles be made available? 	L. Lilje/ A. Yamamoto
•What are the sources of present limitations in gradient yields from cavity to cavity?	L. Lilje
•What approaches will be pursued to increase the cavity yield/vendor yield?	L. Lilje/ A. Yamamoto
 How will sufficient number cavities/cycles be made available to 2012? 	A. Yamamoto

Questions Continued;

Plug-Compatibility

Specific Questions	To be responded/an swered by:
•While the topic of "Plug compatibility" relates both to R&D and industrialization phases, it would be more suitable for the review goals to focus on the role for the R&D phase. Some of the related issues that would be helpful to address are:	J. Kerby
•What are the expected cost/performance advantages of each of the options being considered (for cavities, couplers, tuners), especially relative to the XFEL choices?	(To be discussed)

ir

ic SCRF Session Agenda, April 19

Time	Report	Charged by	Note
09:30	Introduction	A. Yamamoto	
09:40 10:15	Path to finalizing cavity field gradient R&Ds to improve the gradient Decision process 	L. Lilje A. Yamamoto	S0
10:30 11:00 11:00 11:30 12:00 12:20	 Coffee Break Path towards industrialization - Cavity Integration - Cryomodule - Role of plugcompatibility (cavity/cryo) - Cryogenics 	H. Hayano N. Ohuchi J. Kerby (updated) T. Peterson	S1
12:30 14:00 14:20	Lunch break - HLRF - MLI: beam dynamics and quadrupoles	S. Fukuda C. Adolphsen	
14:40 14:40 15:00 15:20 15:30	Lesson expected from system tests - STF at KEK - NML at FNAL Summary / Discussions Adjuorn	H. Hayano M. Champion A. Yamamoto	S2

backup

.

AAP-SCRF-Introduction

AAP Review General Agenda

	17(Fri)	18(Sat)	19(Sun)	20 (mon)	21(Yue)
9			ATF		
			7.11		
10	ACFA-GDE			AS	Joint
	Joint	CFS	SRF	,	Summary
11					
10					
12					
10					
13					
14					
14		CESRTA		MM	
15	AAP		SRF	РМ	
	Guidance			summary	
16		FLASH			
17	17 AAP Closed Session				