ILD Machine Detector Interface

Karsten Buesser

TILC'09 Tsukuba 18.04.2009

ILD Detector Model

K. Buesser

Mechanical Concept

- platform for push-pull
- 3 barrel yoke rings, 2 endcaps
- central yoke ring carries cryostat with coil and barrel calorimeters
- endcap yoke carries endcap calorimeters
- TPC and SET suspended from cryostat
- Inner silicon detectors in support structure (CFRP) supported from TPC
- QD0 magnet and forward calorimeters carried by pillar, suspended from coil cryostat with tie-rods

Inner Detector Support

....**il**C

QD0 Support

Suspended from pillar and tie-rods

Forward Calorimeters

TPC and Barrel Calorimeters

Insertion tooling

- We have found a conceptual design of the detector
- R&D is needed for an engineering solution

ILD Coil

- Follows CMS design
- Needs five layers due to stored energy (correction coils)

Yoke

- Push-pull requirement for the stray fields (50G at 15m) defines iron thickness: ~2.7m in the barrel
- Magnetic forces on endcap are huge (~18 kt weight equiv.)
 - Deformations of endcap are under control with proper design (~3mm)

Cabling Scheme

- Barrel detector cables will be routed between cryostat and barrel yoke to gap between barrel yoke rings.
 Component services
- Space needed between barrel and cryostat:
- Gaps between barrel rings: 50mm
- Gaps between barrel yoke and endcap not large enough (25mm)
 - possible solution: route cables through four channels: 100 mm x 825 mm
- Cables of inner silicon detectors routed along beam pipe:

Detector Assembly and Opening

Surface assembly of the detector à la CMS

Underground procedures:

- Install QD0 support pillar
- QD0 with support structure
- end cap yoke w. endcap calorimeters
- first barrel yoke ring
- central yoke w. coil and barrel carlorimeters

- TPC
- inner part: silicon detectors, beam pipe
- third barrel ring
- second yoke endcap
- second pillar, QD0

Needs 30m hall space (RDR hall has 25m)

Opening on the Beam

....**i**ſ

- Endcap yoke partially split allows ~1m access
- Allows for short maintenance in the beam position
- Every major work will be done in the parking position
- Removing the pillar would allow a non-split endcap
 - mechanically nicer
 - needs other QD0 support

Detector Services

Primary services located on surface, e.g.:

- Water chillers
- Power transformers
- UPS facility
- Helium storage and compressor plant

Secondary services close to the detector (underground but not on-board):

- voltage supplies
- AC/DC converters and cryogenics for coil
- vacuum services
- computing and data links
- On-board services, e.g.:
 - QD0 cryogenics
 - cold box and valve box for coil

RDR Underground Cavern

- just 25m wide
- shafts above hall
- large volume (due to 400t crane)
- just one service cavern

Underground Cavern Design Study

Push-pull Operations

- Detector services are provided using cable chains
- Few on-board services needed (QD0 supply)
- Flexible helium lines
 needed
 - either cold
 - or warm
 - R&D needed in any case!
- Bus bar connection
 for coil

Cryogenics

Push-pull Operation

Moving out:

- power down the coil (~4h)
- remove radiation shield (pacman)
- disconnect local supplies (bus bar)
- disconnect beam pipe between QD0 and QF1
- move detector towards garage position on platform
- connect local supplies in garage position

Moving in:

- reverse procedure as above
- alignment and calibration using e.g. MONALISA

Total time: 2 days (one for movement, one for alignment)

Note: this relies on the assumption that the coil and its ancillaries can be kept cold during the movement

This needs careful R&D

Dedicated talk on ILD push-pull issues by T. Tauchi!

Alignment

- MONALISA interferometric laser system could be used to align both QD0 magnets with respect to each other and to the beam axis
- Could also be used to align the detector itself
- Conceptual studies have started
- Again, full engineering study is needed to study access of laser beams in vacuum to the magnets (not on Lol timescale!)

Detector axis:

- + ± 1 mm and 100µrad w.r.t. line defined by QF1
- detector height adjustment range: ± several cm, depending on geological requirements

QD0 alignment:

- Alignment system:
 - Degrees of freedom: 5 (x,y,pitch,yaw,roll)
 - Range per d.o.f.: ±2mm, ±30mrad (roll), ±1 mrad (pitch, yaw)
 - Step size per d.o.f.: 0.05 μm
- Accuracy before low-intensity beams are allowed to pass:
 - ±50µm (x,y), ±20mrad(roll), ±20µrad (pitch, yaw)
- Accuracy and stability after beam-based alignment:
 - ±200nm and 0.1 µrad w.r.t. line defined by QF1 stable over 200ms between bunch trains
 - QD0 vibration stability: less than 50 nm within 1ms bunch train
- Control of the mover system will remain under control of BDS system and might be adjusted during the run

Shielding

- ILD will be self-shielding (tech. note by T. Sanami et al.)
- · ,Pacman' shielding could be simple concrete portal
- Detailed studies needed

Interaction Region

- QD0 integration
- Beam pipe
- Background suppression

QD0 Support

- QD0 supported by pillar outside of the detector and suspended on tie rods from the cryostat
- Monitored by MONALISA, placed on actuators for alignment

QD0 Support

7.3716e-10 4.9144e-10 2.4572e-10 0 Min

→ Amplitude: 2nm< 50nm @8.3Hz (Vetical direction)

9.37e-10

3.12e-10

0.

12.5

37.5

Frequency (Hz)

25.

50.

62.5

75.

100

H. Yamaoka

24

Beam pipe design

Design principles:

- no interference with luminosity
- · no interference with pairs while having a small radius for vertexing
- compliant with 7 mrad crossing angle
- as less material as possible (photon conversions, hadron interactions, vacuum)
- low em heat load
- vaccum requirements (pumping)

Made from Beryllium with some support rings (8 kg total mass)

Mechanical behaviour studied

Heat load below 20W

Engineering design needs a lot more effort, close collaboration with manufacturer Cost around 1-1.5 MEUR (sic!)

H. Videau et al.

Beam pipe studies

 Detailed studies done at KEK (Y. Suetsugu) and in France (H. Videau et al.)

Machine Induced Backgrounds

- Pair backgrounds have been studied for LDC and GLD in detail
- Needed to re-do simulations with ILD geometries and 3.5T magnetic field
- Low-P (500) backgrounds comparable to 1 TeV nominal

Subdetector	Units	Layer	Nom-500	Low-P-500	Nom-1000		
VTX-DL	$hits/cm^2/BX$	1	3.214 ± 0.601	7.065 ± 0.818	7.124 ± 1.162		
		2	1.988 ± 0.464	$4.314{\pm}0.604$	4.516 ± 0.780		
		3	0.144 ± 0.080	$0.332 {\pm} 0.107$	$0.340 {\pm} 0.152$		
		4	0.118 ± 0.074	$0.255 {\pm} 0.095$	0.248 ± 0.101		
		5	0.027 ± 0.026	$0.055 {\pm} 0.037$	0.046 ± 0.036	c F ^{****}	10 ⁻¹
		6	0.024 ± 0.022	0.046 ± 0.030	0.049 ± 0.044		
SIT	$hits/cm^2/BX$	1	0.017 ± 0.001	$0.031 {\pm} 0.007$	$0.032 {\pm} 0.012$		10-2
		2	0.004 ± 0.003	0.016 ± 0.005	0.008 ± 0.002		
FTD	$hits/cm^2/BX$	1	0.013 ± 0.005	0.031 ± 0.007	0.019 ± 0.006		10 ⁻³
		2	0.008 ± 0.003	0.023 ± 0.007	0.013 ± 0.005	200	10
		3	0.002 ± 0.001	0.005 ± 0.002	0.003 ± 0.001	┝ ╹┃┃┃┏┯┯┓┃┃┃╹ ┤ <mark>╸</mark> ╸	10-4
		4	0.002 ± 0.001	0.007 ± 0.002	0.004 ± 0.001		10
		5	0.001 ± 0.001	0.006 ± 0.002	0.002 ± 0.001		4 o-F
		6	0.001 ± 0.001	0.005 ± 0.002	0.002 ± 0.001		10
		7	0.001 ± 0.001	0.007 ± 0.002	0.001 ± 0.001	├ '!╤!' ┤_	
SET	hits/BX	1	5.642 ± 2.480	57.507 ± 10.686	13.022 ± 7.338		10-0
		2	5.978 ± 2.360	59.775 ± 8.479	13.711 ± 7.606	-3000 -2000 -1000 0 1000 2000 3000	
TPC	hits/BX	-	408 ± 292	3621 ± 709	803 ± 356	z (mm)	
ECAL	hits/BX	-	155 ± 50	1176 ± 105	274 ± 76		
HCAL	hits/BX	-	8419±649	24222 ± 744	19905 ± 650		

- The ILD LoI describes the conceptual design of the ILD Machine
 Detector Interface
- All areas need intense technical studies to converge on an engineering design

