

Proposal to Demonstrate the CLIC Polarized Electron Source

A. Brachmann, J. C. Sheppard, F. Zhou SLAC

Proposal

It is proposed that SLAC group demonstrate full charge extraction of polarized electrons suitable for use as the CLIC electron source.

Proposal

This work will be accomplished in part by modifying the existing Flash-Ti laser system to produce a 156 ns, cw optical pulse at the requisite power level. The modified laser system will be used to illuminate cathodes in the existing 120 kV dc gun located in the B006 Gun Test Facility.

Proposal

In addition, rf capture will be simulated using Paramela to both estimate the overall capture efficiency and to specify the design requirements of the bunching and capture systems. SLAC will work with the CLIC source group to develop performance specifications.

Schedule

Expect to try this before September, 2009 depending on other activities. Need to understand limitations (with existing equipment). If limited, will make corrections in FY2010.

Further along (2012?), will put SLAC cathode and laser together with JLab HV gun.

Proposal, part II (not so sure about this)

It is also proposed that the SLAC group work with an industrial partner to develop a 2 GHz laser system which could be substituted for the cw system. The partnership can take the form of a direct contract or through an SBIR process.

GOALS

The major goals for photocathode development at SLAC for the ILC and CLIC are:

- 1) demonstration of full charge production without space charge and surface charge limitation;
- 2) >85% polarization;
- 3) ~1% QE and long QE lifetime.

TABLE 1).	Major parameters of the ILC and CLIC high-current high-
	polarization electron sources.

politication of our on sources.					
Parameters	ILC	CLIC			
Electrons Per Microbunch	$3x10^{10}$	6x10 ⁹			
Number Of Microbunch	2625	312			
Width Of Microbunch	1 ns	100 ps			
Time Between Microbunches	360 ns	500.2 ps			
Width Of Macropulse	1 ms	156 ns			
Macropulse Repetition Rate	5 Hz	50 Hz			
Charge Per Macropulse	12600 nC	300 nC			
Average Current From Dc-Gun	63 μΑ	15 μΑ			
Peak Current Of Microbunch	4.8 A	9.6 A			
Current Intensity (1cm Radius)	1.5 A/cm ²	3.0 A/cm ²			
Polarization	>80%	>80%			

CLIC Laser Requirements

There are two approaches to the CLIC laser: develop a 2 GHz optical pulse train, chopped and amplified to the proper pulse length and bunch energy or develop a 156 ns cw optical pulse and use an rf system to do all of the electron bunching. The former approach will possibly ease the requirements on the rf bunching system but will not eliminate the need for rf bunching. The CLIC injector linac rf system will run at 2 GHz. This in combination with the damping ring eliminates the concerns of interbunch satellites being generated with the use of a cw optical pulse.

For a cw optical pulse, the pulse energy required is E_P :

$$E_{P} = fqhv \frac{n_{b}N_{b}}{\xi_{rf}QE}$$

Wherein f is an arbitrary overhead factor on the order of unity; $h\nu$ is the laser photon energy, n_b is the number of electrons per microbunch, N_b is the number of microbunches per pulse, ξ_{rf} is the capture efficiency of the rf bunching system, and QE is the cathode quantum efficiency for electron emission.

The peak optical power from the laser is

$$P_P = \frac{E_P}{T_P}$$

where T_P is the pulse width.

The average laser power is P_{avg} :

$$P_{avg} = f_{rep} E_p$$

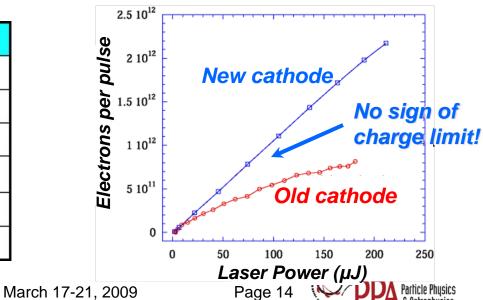
Parameter	Symbol	Value	Units	Comments
Electrons per bunch	n_b	6×10 ⁹	#	CLIC spec.
Bunches per pulse	N_b	312	#	CLIC spec.
Pulse length	T_P	156	ns	CLIC spec.
Repetition rate	f_{rep}	50	#	CLIC spec.
Photon energy	$h\nu$	1.6	eV	775 nm
Quantum Efficiency	QE	0.25	%	Optimistic(?)
Capture efficiency	ξ_{rf}	70	%	E158 experience
Overhead factor	f	2	#	Arbitrary

Optical Pulse energy	E_P	548	μJ	
Optical Peak Power	P_P	3.5	kW	
Optical Average Power	P_{avg}	27	mW	

Table 3: @ GHz optical pulse train requirements

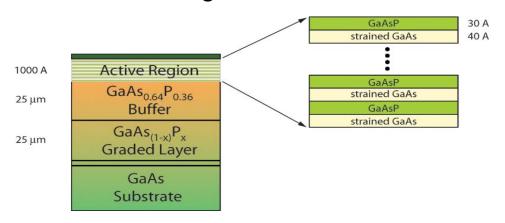
Parameter	Symbol	Value	Units	Comments
Electrons per bunch	n_b	6×10 ⁹	#	CLIC spec.
Bunches per pulse	N_b	312	#	CLIC spec.
Pulse length	T_P	156	ns	CLIC spec.
Repetition rate	f_{rep}	50	#	CLIC spec.
Photon energy	$h\nu$	1.6	eV	775 nm
Quantum Efficiency	QE	0.25	%	Optimistic(?)
Capture efficiency	$\xi_{r\!f}$	85	%	Arbitrary Estimate
Overhead factor	f	1.5	#	Arbitrary

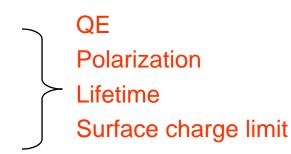
Optical microbunch length	t_b	50	ps	1-100 ps
Optical microbunch energy	E_b	0.9	μJ	
Optical microbunch peak power	P_b	18	kW	
Optical Pulse energy	E_P	288	μJ	in 156 ns
Optical Peak Power	P_P	1.8	kW	Averaged over 156 ns
Optical Average Power	P_{avg}	14	mW	At 50 Hz



E158: Polarized Beam

Parameter	E158	NLC-500
Charge/Train	6 x 10 ¹¹	14.3 x 10 ¹¹
Train Length	270ns	260ns
Bunch spacing	0.3ns	1.4ns
Rep Rate	120Hz	120Hz
Beam Energy	45 GeV	250 GeV
e- Polarization	80%	80%




Photocathode Research (AB-AAP)

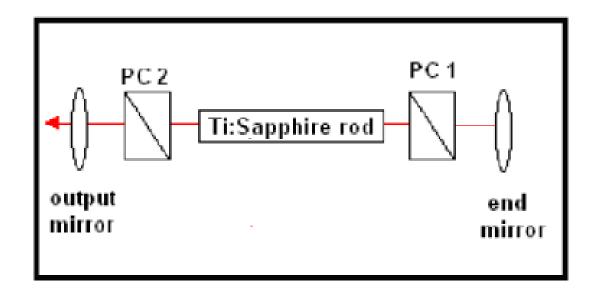
Baseline Design: GaAs/GaAsP

Semiconductor engineering to optimize current designs to ILC conditions:

Composition and layer structure Doping level Activation technique

SLAC-TN-03-009: Q-switching the Flash Ti:Sapphire Laser

Kelly Cone (A. Brachmann) August 21, 2003


V. Conclusion

A Q-switch was successfully performed on the flash lamp pumped Ti:Sapphire laser without inflicting damage upon the laser cavity or other optical elements. The Q-switched laser pulse was characterized for a 250 ns square input pulse of 2 kV to a single Pockels cell. The results suggest that the high voltage pulse to the Pockels cell should be triggered 7.6 µs after the laser is triggered.

This particular arrangement was able to increase the output power of the laser from 0.4 mJ to over 2.3 mJ. The laser pulse generated from the Q-switch demonstrated good stability (< 0.5% jitter) and pulse width of FWHM > 200 ns. This Q-switch technique will be used at SLAC for polarized photocathode R & D as well as future accelerator plans including the Next Linear Collider

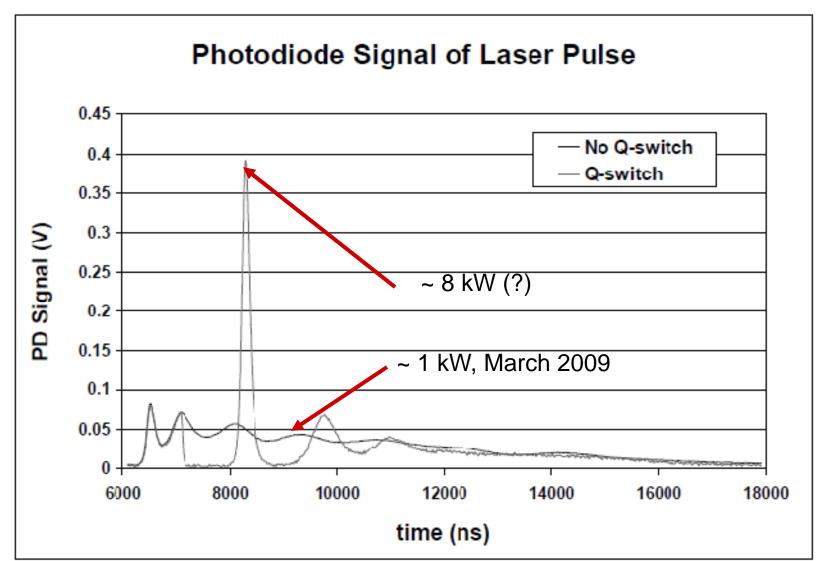
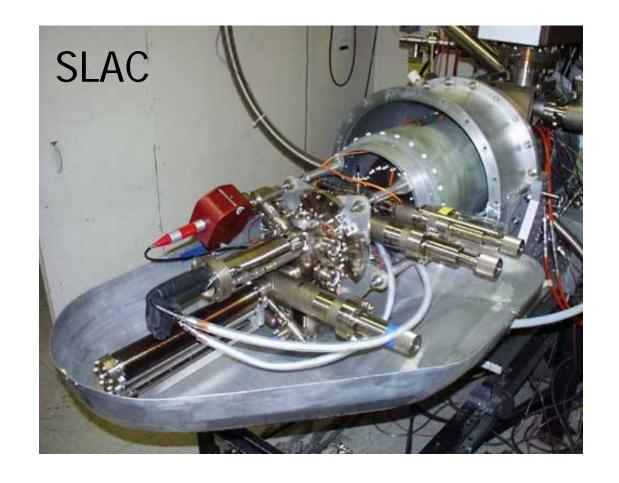
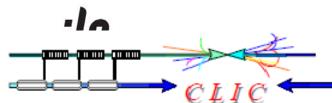



Figure VIII. Comparison of PD signals of laser pulse with and without a Q-switch

SLAC Polarized Electron Gun, GTL

Jefferson Lab Polarized Electron Gun


Schedule

Expect to try this before September, 2009 depending on other activities. Need to understand limitations (with existing equipment). If limited, will make corrections in FY2010.

Further along (2012?), will put SLAC cathode and laser together with JLab HV gun.

CLIC e-Beam Source Parameters

Parameter	Symbol	CLIC
Number Electrons per microbunch	$N_{_{\!e}}$	6 x 10°
Number of microbunches	n _b	312
Width of microbunch	t _b	~ 100 ps
Time between microbunches	Δt_{b}	500.2 ps
Microbunch rep rate	f _b	1999 MHz
Width of macropulse	T _B	156 ns
Macropulse repetition rate	\mathbf{f}_{rep}	50 Hz
Charge per micropulse	C _b	0.96 nC
Charge per macropulse	C _B	300 nC
Average current from gun ($C_B \times f_{rep}$)	I _{ave}	15 uA
Average current macropulse (C _B / T _B)	I _B	1.9 A
Duty Factor w/in macropulse (100ps/500ps)	DF	0.2
Peak current of micropulse (I _B / DF)	I _{peak}	9.6 A

If spot radius = 1 cm

=> challenge for an cathode/anode optics with uniform focusing properties

> => Current density J = 3 A/cm²

For 500 GeV option

=> I peak ≈ 20 A => Current density J ≈ 6 A/cm²