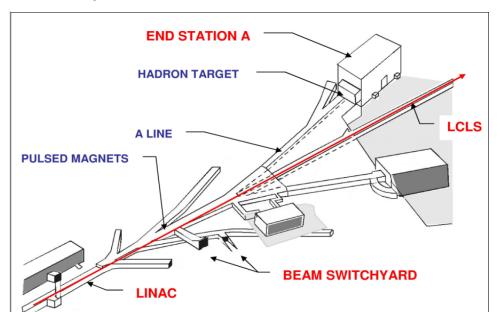
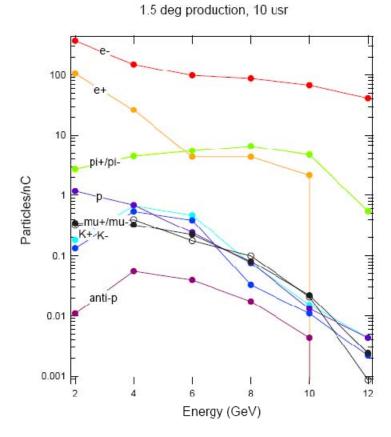
Test Beams at SLAC

John Jaros

TILC09 Tsukuba April 19, 2009

End Station Test Beam (ESTB) Proposal Will Restore Test Beams at SLAC

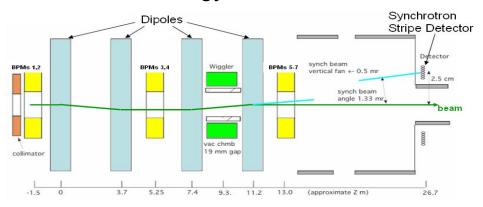

- * There is a Long History of Linear Collider studies at ESA and FFTB
 - Final Focus feedback studies
 - Beam Energy Spectrometers
 - MDI, Collimator Wakefields, Beam Pickup
- * Test Beam Activities Have Been Interrupted by Installation and Operation of LCLS, SLAC's X-ray Laser.
- * Proposed Test Beam Facility is a Unique HEP Resource
 - World's only high-energy primary electron beam for large scale Linear Collider MDI and beam instrumentation studies
 - Secondary electron, hadron, and photon beams available for detector development and calibration for LC, SLHC, Super B, and Particle Astro
 - Huge experimental area, existing DAQ and conventional facilities, and historically broad user base

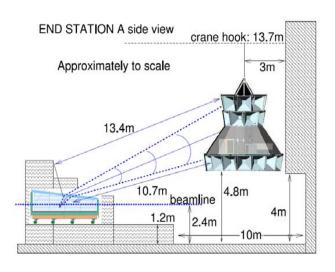


ESA Test Beam Provides Electrons/Hadrons up to 13.6 GeV, from single particles to full beam intensity

- •Kick 13.6 GeV LCLS beam to ESA 5 Hz, 2 x 10⁹ e⁻/ pulse primary beam
- •Clean secondary electrons/positrons p<13.6 GeV, 0.1/pulse to 2 x 10⁹ e⁻/pulse
- •Secondary hadrons
 ~1 π / pulse < 12 GeV/c

Secondary Particle Yields





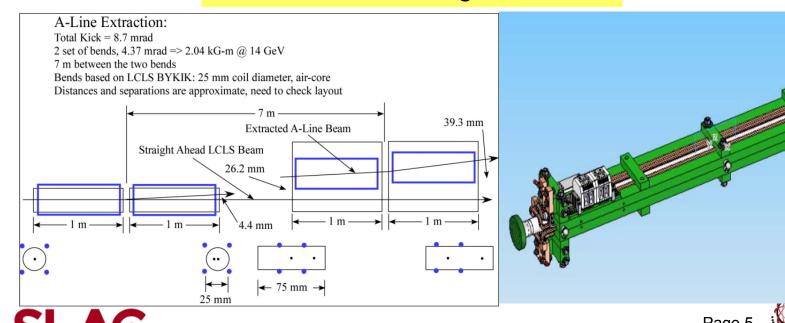
LC Beam Instrumentation, MDI, Detector R&D

LC Beam Energy Measurement

Calibrate Anita with Full Beam into Ice

Ideal for LC Detector R&D

- LC beam timing—precisely known arrival time
- Ultra-clean, known momentum electrons for ECal studies
- Photon beam possible
- •≤12 GeV/c hadrons for tracker, vertex detector studies. Multiple scattering negligible.
- •Hcal Studies for the low and intermediate energy hadrons which dominate ILC jets.


ESTB Stage I Proposal

- Construct kicker magnets and vacuum chamber for BSY
- Update PPS System and install new beam dump for ESA
- Update MPS and Controls as needed

NATIONAL ACCELERATOR LABORATOR

* Schedule: Ideally install Jan 2010, maybe 2011

Use LCLS Kicker Magnets in BSY

Primary Electron Beam Properties

Energy 13.6 GeV

5 Hz Repetition Rate

 $0.15 \text{ to } 0.6 \times 10^{10} \text{ (1 nC) e}$ Charge per pulse

<0.058% Momentum spread rms

280 μm Bunch length rms

Emittance rms ($\gamma \varepsilon_x \gamma \varepsilon_v$) $(4,1) \times 10^{-6} \text{ m rad}$

Spot size at waist $(\sigma_{x,y})$ ~10 μm

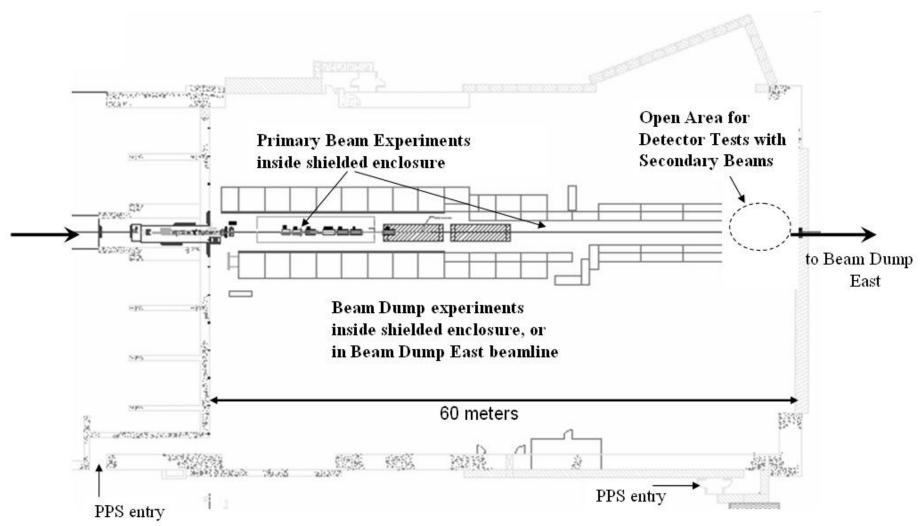
Momentum dispersion

η and η' <10mm

Drift space available

for experimental apparatus 60 m

Lots of room for apparatus


Transverse space available

 $5 \times 5 \text{ m}$ for experimental apparatus

ESA Experimental Area

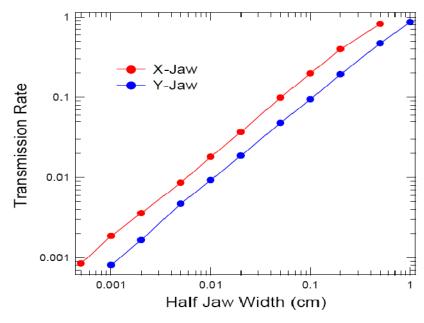
ESA Infrastructure

Available Instrumentation

Trigger counters; Halo veto counters; High resolution beam hodoscope; Particle ID (Cherenkov, TOF, shower counter); Small, high field solenoid; sturdy support table with remote movers

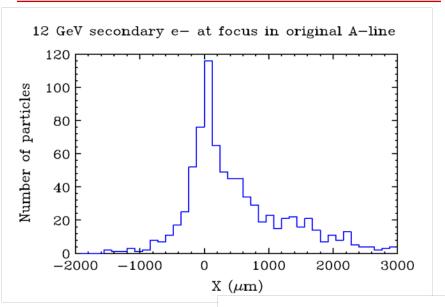
Cranes

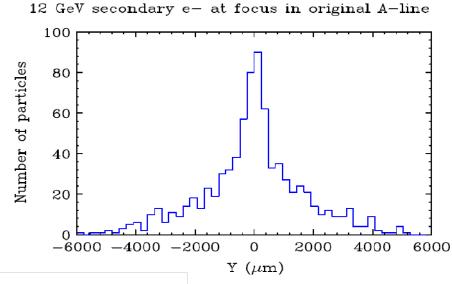
15 and 50-ton cranes available

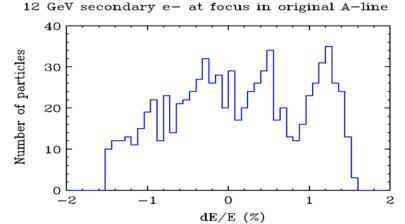

Secondary Electrons and Positrons

* Inserting a thin foil in the transport line to ESA, and using the beamline as a spectrometer, creates a clean secondary electron/positron beam over the full range of energies (<13.6 GeV/c) and a wide range of intensities down to ~1/pulse.

Production Rate from Foil

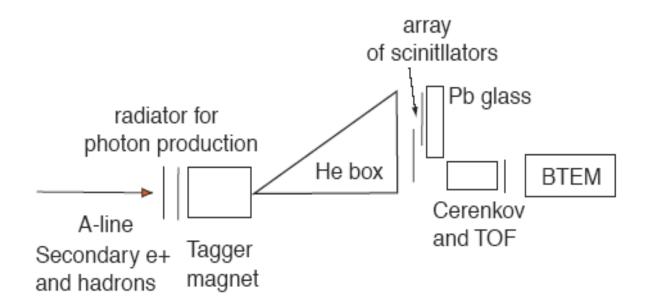

Attenuate up to Factor 10⁶





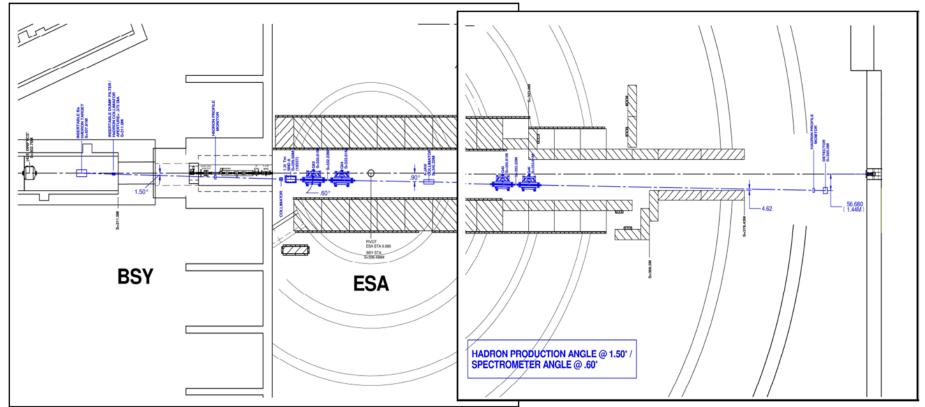
Secondary Electrons Beam Properties

 $\sigma_{x,y} \sim 1 \text{ mm}$


∆p/p ~ ± 1%

Photon Beam

Clean electrons plus tagging system provides photon beam capability



ESTB Stage II Hadron Production

Add Be target, beam dump, analyzing magnet, momentum slit, and quadrupole doublets to produce a secondary hadron beam in ESA. Production angle = 1.5° and Acceptance = $10 \, \mu sr$

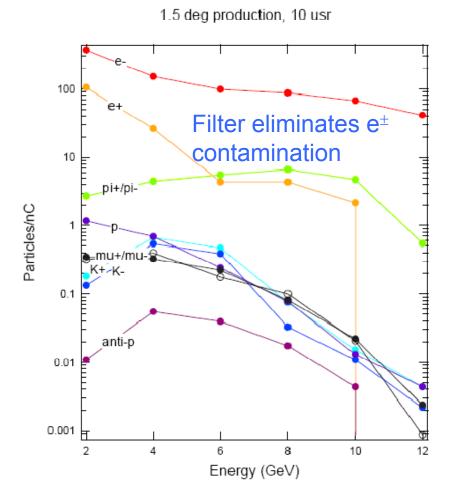
Secondary Hadron Beam Properties

Particles per pulse Bunch repetition rate Precise beam trigger Yes rms x, y spot size

Momentum analysis X,y,z space available Rate for p, K, µ

0.1-12 GeV

 $0.1-10 \pi / nC$


5 Hz

1-2 mm

 $\Delta p/p \sim 1\%$

5 m, 5 m, 15 m

 $0.1-0.01/\pi$

Energy

SLAC Test Beam Conclusions

- * SLAC is proposing to restore test beam capability to ESA, making use of pulses borrowed from LCLS.
- Unique high energy primary electron beam will allow continued studies of LC beam instrumentation and MDI.
- * An extremely clean electron/positron beam can be delivered over all the available energies (<13.6 GeV) and a very wide range of intensities, suitable for detector R&D.
- * A hadron beam is also planned, with energies up to 12 GeV, suitable for tracker, vertex detector, and calorimeter R&D.
- * Proposal should be submitted soon. Beam could be available in 2010 or 2011.

Proposal and Proponents

ESTB End Station Test Beam

A Proposal to Provide Test Beams in SLAC's End Station A

R. Erickson, T. Fieguth, C. Hast, J. Jaros, D. MacFarlane, T. Maruyama, Y. Nosochkov, J. Sheppard, T. Raubenheimer, D.Walz, and M. Woods

SLAC National Accelerator Laboratory Menlo Park, California

