

Photon Collider Laser Work at LLNL

Jeff Gronberg, Brent Stuart LLNL

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

18 April 2009 TILC09

Global Design Effort

Laser requirements:

- Pulse train matched to the ILC bunch structure + ~300 extra pulses per train to initially fill the cavity
- 30mJ / pulse around 1kW average power
- Beam quality able to drive the cavity:
 - Pointing stability
 - Phase matching
 - Wavefront quality

Basic system layout

IIL

Pulse injection

IIL

KM Labs pulse stretcher/compressor

Lasermetrics Pockels cell and driver

- Off-the-shelf
 technology
- Similar to lasers for ILC photogun
 - Special photon collider requirements:
 - Higher pointing stability
 - Higher bandwidth for narrower pulses
 - Tighter wavefront quality

18 April 2009 TILC09

Global Design Effort

Intermediate Amplification

5 mJ, ns
Medium Energy
Amplification

IL

Cutting Edge Optronics' slab pumphead, the Whisper MiniSlab[™] Off-the-shelf technology exists to reach this power level

•

At this level nonlinear and thermal effects begin to be important

0.1 mJ, ns

Low Energy Amplification

10μJ, ns, 5Hz train of 3000 pulses

Cutting Edge Optronics RBA PowerPULSE

Main Amplifier

İİĻ

- Not commercially available
- Basic enabling technologies exist:
 - Diode pumping
 - Thermal management
 - Long upper state lifetime materials

Diode pumped Higher efficiency and reliability

Forced cooling Allows 10-Hz operation

Yb:crystals

Increased energy

storage

and efficiency

(Yb:S-FAP)

Global Design Effort

MERCURY laser is an existence proof

- MERCURY:
 - 10 Hz
 - 60 J/pulse
 - Good wavefront quality
 - But there are differences going from single pulse to a pulse train
 - Non-linear effects are lower
 - Thermal distortions will change over the trains

Pulse Compression

ΪĿ

Vacuum compressor (Titan – LLNL)

- System will be in vacuum after compression
- Large gratings are needed to keep power levels low

World's largest dielectric gratings (LLNL)

Prototyping: Stage 0 (Now)

- Pre-conceptual design and simulation of the system. Is there a solution?
 - Create a pulse train and get it to 30mJ/pulse
 - Couple pulses to cavity
- Simulate full cavity behavior so that required tolerances can be specified for:
 - Pointing tolerance
 - Phase accuracy
 - Feedback and control systems
 - Wavefront quality
- Simulate the full laser system to determine if tolerances can be achieved
- Convene full outside review of the design
 - Next year

Global Design Effort

- Build CEP stabilized oscillator and two mirror cavity
 - Demonstrate coherent addition and locking of oscillator to cavity
- Add CW laser and demonstrate higher power operation
- Design next stage

Two mirror cavity at 100Mhz

- Replace two mirror cavity with small-scale version of photon collider cavity
- Investigate and downselect materials for next amplifier stages
- Design next stage

Scaled version of gamma-gamma cavity 19-Mhz, 16m – fits on 5m optical table

- Decide on gain medium for next stages
- Build and demonstrate medium energy pulse train and cavity operation
- Add deformable mirror for wavefront correction
- Compton backscatter demo? (SLAC or ATF2)
- Design next stage

- Build main amplifier
- Demonstrate full power operation at 19Mhz

IIL

- Creating a laser system that can create a train of pulses with the correct energy seems workable
- Still to be determined: the required tolerances on laser beam quality to allow it to drive the cavity
- Rough estimate of cost for a laser system is \$20M once it is a known technology
- Prototyping program to build the first one is probably about double that.