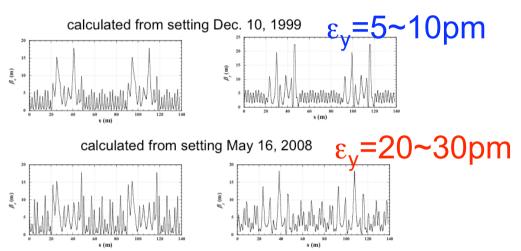
ATF DR Study Dec. 08 - Apr. 09

S.Kuroda(KEK)
ATF DR Study Group

Goal of the Study

- We have measured ε_y of 5-10pm in 1999. But since then we hardly measured such low emittance because the other R&D have been majority of the ATF study.
- Typical emittance measured in 2008 was 20-30pm.
- These days, some experiments require low emittance in DR.
 - For ATF2 σ_v^* =70nm, ϵ_v^* =24pm is needed.
 - For ATF2 σ_v^* =35nm, ϵ_v^* =12pm is needed.
 - For study of fast ion instability, ε_{v} <10pm is needed.
 - For ILC DR study, goal emittance is ε_y =2pm.
- Our goal: to reproduce as small emittance as 5-10pm, and then challenge to lower emittance such as 2pm.

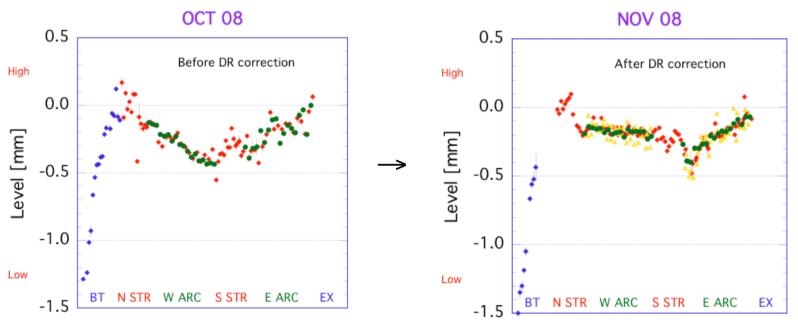

What's New in DR Operation

- Start with 'design optics' and optics correction(β beat correction)
- DR re-alignment in summer 2008
- Introduction of electric load for DR main bend.
- (New QM7R.1 with larger bore radius)

•

DR Optics

Optics mismatching?



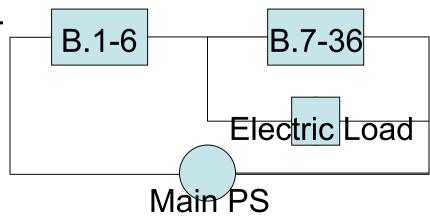
Kubo pointed out that the optics distortion is the one of the source of large emittance in DR.

Kubo, Special ATF2 Project Meeting, KNU, 2008

- 'design optics' was made in 2007
 - Re-matching
 - Tune adjustment to measured tune
- DR commissioning has started with 'design optics' in Nov. 2008.

DR Re-Alignment in Summer Shutdown 2008

M.Takano


Alignment done for

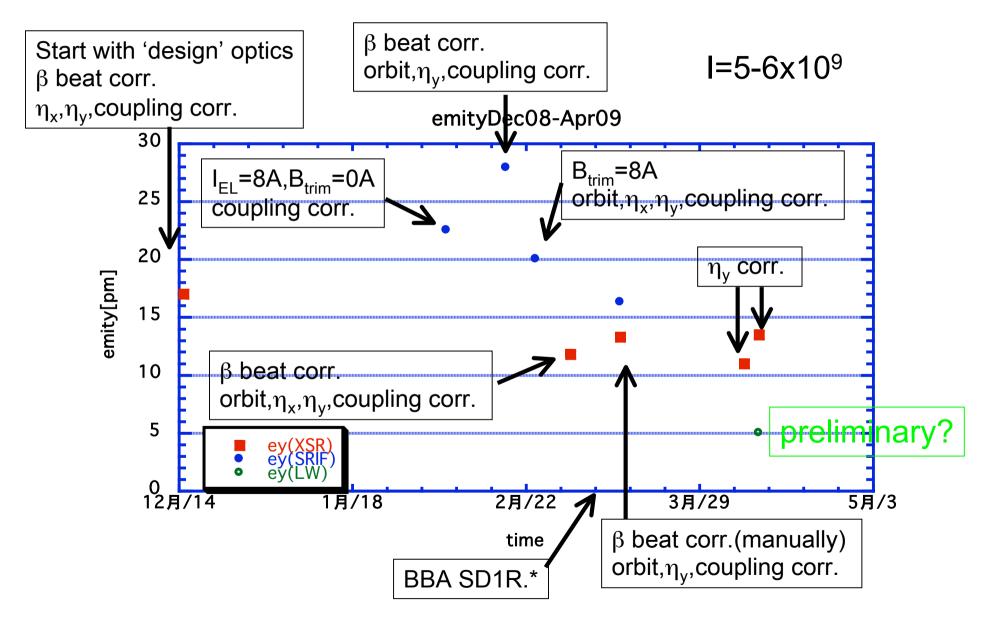
V position: All around the ring

H position: Straight section

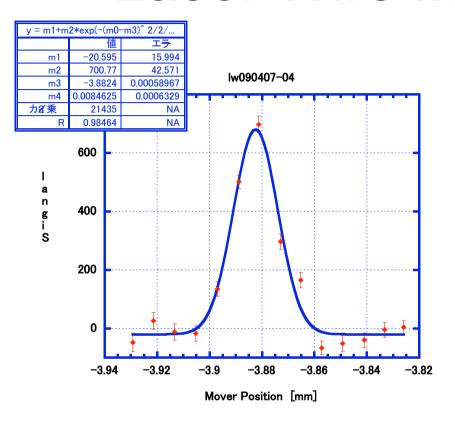
Electric Load for DR Main Bend

- 36 B magnets in DR
- 6 of them were productions of different maker from the others, and the field characteristics is slightly different.
- Correction has been done by trim coil, but it does not seem enough. The trim current <8A due to heat-up of the coil is air-cooled).
- Introduction of electric load is expected to improve the DR orbit,
- I_{EL}<13A, by power dissipation.

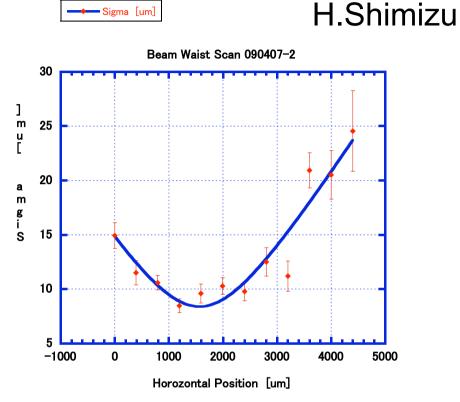
Emittance Tuning


- β beat correction
 - Using QM trim, new QM7, IHEP Q trim and QF1&2(for tune adjustment)
- Orbit correction
 - Using correctors for several settings of the Bend trim and electric load
- Dispersion correction
 - $-\eta_x$ in straight section is corrected by QM trim
 - $-\eta_v$ is corrected by correctors
- Coupling correction
 - ONLINE correction: Correction of vertical leakage of the horizontal kicks by a couple of horizontal correctors.
 - OFFLINE correction: The same as ONLINE correction but using data by all the horizontal corrector in the arc.
 - Correction is done by Skew Q winding trim coil of SX.

Emittance Measurement


- Beam size measurement
 - SR Interferometer
 - Quick measurement, 5ms
 - Minimum beam size can be measured is ~5-6um
 - Suffering from mechanical vibration
 - XSR monitor
 - Quick measurement, 20ms→50Hz oscillation?
 - Minimum beam size can be measured is ~5-6um
 - Less mechanical vibration but still.
 - Laser wire
 - A few ten minutes requires for measurement
 - 'design' laser waist size is 6.5um

 going to higher mode, beam size of 1um can be measured.
- Beta function measurement
 - Fitting β of Qs nearby which were obtained from tune slope.


Beam Tuning Summary

Laser Wire Measurement

Minimum size measured=8.46um Measured Laser waist=5.96um → e beam size=~6um

Sigma [um]

Scanning in horizontal position

Fitting with
$$\sigma_{\text{Obs.}}^2 = \sigma_e^2 + \sigma_{\text{LW}}^2$$
$$= \sigma_e^2 + \frac{\lambda}{4\pi} z_0 \left\{ 1 + \frac{(z-c)^2}{z_0^2} \right\}$$

e beam size=6.41±1.07um

Assuming $\beta_v \sim 5m$, $\epsilon_v = \sim 7pm$

Summary and Discussion

- Now the vertical emittance of ATFDR is ~12pm(by XSR monitor).
- Measurement errors
 - 10% for both of beam size(by XSR) and b measurement statistically. Then the error of measured emittance is ~14%.
- Need to check minimum σ_{v} measurable by XSR.
 - When we measured ϵ_y =12pm, σ_y =~6um and β_y =~3m. If the 50Hz oscillation is $\sigma_{50\text{Hz}}$ =~4um which was observed in 2007, ϵ_v =~6.6pm?
- Need confirmation of laser wire measurement.
- For much smaller emittance:
 - Some BPMs in DR are fluctuating by O(100um).
 Stabilization of these BPM→emittance tuning becomes more powerfull?
 - Full ORM analysis will improve the emittance?
 - Need reliable monitor(e.g. LW w higher order mode)