TILC09 / SCRF Session

Update on S0 Work in the Americas Region

Mark Champion, Fermilab

With slides provided by:

- Zack Conway, Cornell
- Rongli Geng, Jefferson Lab
- Camille Ginsburg, Fermilab

18 April 2009

- Progress at Jefferson Lab
- Progress at Fermilab & Argonne
- Cavity Inventory and Plans

Cornell University Laboratory for Elementary-Particle Physics

ILC-ART FY2009 Technical Progress

CLASSE SRF Group Cornell University Laboratory for Elementary-Particle Physics

Cornell University Laboratory for Elementary-Particle Physics

Vertical Electropolish Proven Effective

- We have demonstrated gradients >35 MV/m in individual cells of two 9cell cavities processed with vertical EP. (Accel 9 and AES re-entrant)
- In each test the π-mode was limited by quench.

AES Fabricated 9-Cell Cavity Weld Pits Repaired

- We have successfully repaired an AES 9-cell cavity with tumbling and VEP.
- This cavity originally quenched at E_{acc} = 15 MV/m at a weld pit in the first cell, after tumbling and reprocessing E_{acc} > 30MV/m.(100 um tumbling, 200+25 um EP)
- When excited in the $5\pi/9$ -mode a peak fields of 89 MV/m and 1400 Oe were reached in the center cell. This corresponds to $E_{acc} > 37$ MV/m.
- This test demonstrates that tumbling is an effective option to repair weld defects, e.g. pits.
 AES Re-Entrant 9-cell 2.0K Test

2nd Sound Quench Detection

- We have demonstrated that 2nd sound detection can locate multiple quench locations in a single 9-cell cavity cold test
- By exciting different TM₀₁₀ pass-band modes of a 9-cell cavity different cells can be driven to quench.
- This technique is simple, low cost, and quick to implement.

Four Of The Transducers

Pre-Qualified Niowave/Roark Cavities

- Quick pre-qualification of 6 Niowave/Roark 1-cell cavities in 13 cold tests.
 - BCP (~150 μm), Ultrasonic Degreasing, HPR, and Clean Assembly.
- 2 cavities did not quench and showed the expected Q-slope limit due to BCP. (NR-1, NR-4)
- 2 cavities quenched due to "surface bump" from a defect on the manufacturing die.(NR-2, NR-3)
- 2 cavities quenched due to pits on equator weld.(NR-5, NR-6)
- All quench locations were located by 2nd sound detection and inspected with a Questar long distance microscope.

One vendor cavity in past 6 months EP processed and RF tested at JLab

Observing RF surface at hot spots correlated to 30 MV/m quench 9-cell cavity A12 T-mapping in Cell#7

Temperature map 0.949 T-map during quench 10 9 Cell 3 -0.500 AT 8 Thermometer # 7 6 5 -0.0004 3-Cell 7 2-1-0 12 14 16 18 20 22 24 26 28 30 32 2 6 8 10 Azimuth -3 + -* 8-0.949 Cursor 0 11 4

No gross defect observed

Cell 7 equator EBW seam

Line inside box is weld prep machining line

Correlating off-normal EP process with hot region and RF surface apparent roughness 9-cell cavity J2, 30 MV/m strong Q-drop

T-mapping and Inspection cell#1 from input coupler port, Equator weld & "hot" HAZ

New AES 9-cell cavity: AES5 first test after first light EP

1-cell defect study cavity

Pit ~ 500 um

- 1. Optical inspection for locations of defects (two shown)
- 2. BCP 40 um
- 3. Inspection
- 4. BCP 40 um
- 5. inspection

Next step

- 1. RF test with T-mapping at JLab
- 2. Remove responsible defect(s) by grinding at KEK
- 3. RF test with T-mapping again at JLab

Original with controlled defect

Pit 50 um deep 200 um in diameter

> N016 100.000 μm 1 x 350

Re-melted

A half-cell re-melting experiment

A 1-cell cavity is being made for re-melting studies

First step toward ICP

- 1. VEP1 150 minutes
- 2. Rotate Cavity
- 3. VEP2 150 minutes
- 4. 600 degree x 10 hour furnace degas
- 5. VEP3 75 minutes
- 6. Rotate cavity
- 7. VEP4 75 minutes

Cavity is now in preparation for RF test

Vertical Cavity Test Facility

- 35 cavity tests in FY08/FY09, where "test" = cryogenic thermal cycle
 - 9-cell & single-cell 1.3 GHz elliptical cavities and 325 MHz HINS singlespoke resonators
 - instrumentation development, variable coupler, thermometry, cavity

FNAL/ANL 9-cell activity

- ACCEL6 (A6): After 4 JLab cycles, used for variable coupler development. Currently limited by field emission (probably intrinsic to cavity now, not facility problem). Candidate for light EP.
- ACCEL7 (A7): After 4 JLab cycles, used for ANL EP commissioning and tested at JLab. Parameters and process were not adequately controlled, possibly causing performance degradation.
- TB9ACC013 (A13): Test after receipt from JLab under vacuum without any modification.
- AES001 (AES1): Quench location with fast thermometry, optical inspection development, KEK facility commissioning. First FNAL dressed cavity.
- AES003 (AES3): Quench location with fast thermometry, variable coupler (also FE limited), LANL facility and instrumentation development
- TB9ACC017 (A17): (new, not shown) first 9-cell full EP/process/assembly/test cycle April 18, 2009 TILC09 SCRF Session

ANL/FNAL Cavity Processing Facility

Facility being commissioned (already complete for single-cell cavities) Provides complete processing of 1.3 GHz cavities: electropolishing, ultrasonic cleaning, high-pressure rinse, assembly, and vacuum leak test

ANL/FNAL CPF Updates

Ultrasonic rinse with gantry crane

High-pressure rinse system with cart

Cavity assembly rail, shown in vertical & horizontal orientation

Cavity vacuum system

TILC09 SCRF Session

EP single cell cavity performance

	BCP	EP	Ethanol	Eacc [MV/m]	Notes
NR-1	150	93		26.5	Oxidation by acid residual
TE1AES004	107	65	39.2 Equator large pit present		Equator large pit present
TE1AES005	104	100	Yes	36.3	Oxidation by HPR water
TE1ACC002		112	Yes on second	37.1	
TE1ACC001		99		41.3	FE appeared after 120°C baking
TE1ACC003		119		42.1	Pit present
TE1ACC004					24
ADFII 18, 2009			TILCU9 SCF	KF Session	24

Fermilab/Argonne cavity experience

10 recent cleanroom assemblies of single-cell cavities show no field emission at ANL/FNAL joint facility

Test 7 TE1ACC002 handled with new pumping station

Test 14 FE appeared only after 120 C baking

We are satisfied with the complete process/test cycle for single-cell cavities

April 18, 2009

- KEK/Kyoto inspection system delivered, installed, commissioned early in 2009
- Expert assistance to optimize system March 2009

Accel 7 on the optical inspection stand

optical inspection optimization

TILC09 SCRF Session

9-cell cavities

• 9-cell TB9ACC010 was fully inspected as received from vendor before sending to Cornell for vertical EP commissioning

- •No defects discovered.
- Iris anomaly (smoothness) between cells 8 and 9 noted.
 - Accel informed us of grinding in this region during fabrication.

9-cell cavities

• 9-cell ACCEL6 limited by field emission after repeated HPR

Iris between cell 1-2

Iris between cell 7-8

Irises near input coupler end seem rougher with many tiny sharp-looking bumps Irises seem smoother at other end

April 18, 2009

TILC09 SCRF Session

1-cell cavities

- TE1AES004 has huge pit at edge of weld seam, size ~1mm
- Nevertheless, 39 MV/m

TE1AES005: Good performance limited by quench. Found oxidized stripe in beam tube (caused by rotation failure during high-pressure rinsing)

Inspection after test without any cavity processing

1-cell cavities

1-cell cavities

- •TE1ACC003 has a large pit outside the heat-affected zone, which was still there after 119 micron EP
- After 2nd inspection, then only HPR/assembly/120C bake, achieved 42MV/m limited by quench (location verified by T-map)

TILC09 SCRF Session

Tesla-shape nine-cell cavitie	s		
Description	No. Cavities	Status	
AES 1-4	4	tested	
AES 5-10	6	received; testing in progress	
AES 11-16	6	due Oct 2009	
Accel 6-9	4	tested	
Accel 10-17	8	received Mar 2008; testing in progress	
Accel 18-29	12	due May 2009	
Jlab fine-grain 1-2	2	fabrication complete; testing in progress	
Niowave-Roark 1-6	6	due Oct 2009	
Stimulus Procurement	XX	still in the planning stages; assume first cavities ~April 2010	
Total	48		
Already Received	24		
Tesla-shape single-cell cavit	ties		
Description	No. Cavities	Status	
AES 1-6	6	tested at Cornell; further testing in progress	
Accel 1-6	6	received Dec 2008; testing in progress	
Niowave-Roark 1-6	6	received Jun 2008; testing in progress	
PAVAC	4	requisition in progress	
Total	22		
Already Received	18		

- Much progress in the Americas region
- Vertical EP shown to enable >35 MV/m in individual cells of ninecell cavities
 - Further testing planned
- Good tumbling result at Cornell (15 \rightarrow 30 MV/m)
- Optical inspection has been very useful in locating quenchinducing defects
- Thermometry & second-sound enables quench location
- Cavity processing facility at Argonne commissioned with singlecell cavities
 - Nine-cell cavity commissioning has begun
- Excellent series of process/test on Accel cavities
- 12 new nine-cell cavities due in May; 12 more in Autumn
- FY2010 planning underway
 - ART review Apr 29-30 at SLAC