SCECAL Beam Test Results

TILC09 @ Epochal Tsukuba 17 ~ 21 April 2009 Yuji SUDO

University of Tsukuba for the GLDCAL Group / CALICE Collaboration

The Scintillator-Strip Electromagnetic Calorimeter

- Sampling calorimeter with Tungstenscintillator sandwich structure.
- Scintillator strip technology adopted to achieve fine granularity.
- Huge Number of channels $(\sim 5M \text{ for ECAL}).$
- Need to solve many challenging issues
 - Establish the components while keeping low production costs
 - Stability & Robustness
- First need to establish the feasibility!

MPC R/O with WLSE

X–Laver

1 amx4 amx2mm

Development of the Multi-Pixel Photon Counter (MPPC)

1

- Consists of Geiger-mode APD
- High Gain $(10^5 \sim 10^6)$
- Enough Photon Detection Efficiency (~15% with 1600 pixel)
- (package size \sim a few mm)
- Insensitive to magnetic field
- Dark noise exists (~100 kHz)
- Input vs output is non-linear
- We are developing and studying the MPPC with Hamamatsu Photonics /
- Reasonably good performance has been achieved so far for Sci-Strip readout.

$1^{\rm st}$ small prototype performance (tested in 2007 at DESY, 1-6 GeV e^+)

The ScECAL 2nd Test Module

- The final test module to establish the ScECAL feasibility.
- Sandwich structure with scintillator-strips (3 mm) and tungsten layers (3.5 mm).
- Extruded scintillator and new generation photon sensor (MPPC) are fully adopted.
- Strips are orthogonal in alternate layers.
- 72 strips x 30 layers = 2160 channels.
- Overall size $\sim 20 \times 20 \times 25 \text{ cm}$.

Beam Test in Sep 2008 @ MTBF

- Objective: Establish the feasibility of Scintillator-ECAL + Analog HCAL with various types of beams in wide energy range.
 - Energy resolution, Linearity for electrons and pions.
 - Position and angular scan.
 - $-\pi^0$ reconstruction ability of the Scitillator-ECAL
- Beam running during Sep 3rd 29th 2009 at FNAL Meson Test Beam Facility.

The Fermilab Meson Test Beamline

Various types of beams available

- 1-32 GeV electrons
- 1-60 GeV pions
- 32 GeV muons
- 120 GeV protons
- Cerenkov counter available to discriminate electron or pion.

MIP calibration constants

The average is about 160 ADC counts / MIP, and the average of the errors is about 0.5%. For the 2160 channels, the deviation is about 20 % (30 ADC counts).

2009/2/20

The response curve measurement

Result : $N_{pix} = 2424 \pm 3$

9

2009/2/20

Very Preliminary Results

Setting for production of π^0

- To produce π^0 , π^- beam (16, 25, 32 GeV) was injected into Iron target.
- Size of the Iron target: 10x10 cm², thickness 6 cm
- The Iron target was put in ~185 cm upstream of ScECal.
 (The distance of EMCAL from interaction point is 185 cm.)

Reconstruction of Invariant Mass in 2 γ system

(Invariant Mass) = sqrt($2*E_1*E_2*(1-\cos(\varphi))$)

In case two gammas have equal energy,

Energy of π^0 (GeV)	3	4	5	10	15
Distance of two clusters (cm)	16.7	12.5	10.0	5.0	3.3

Strip Clustering

- 1. Define X and Y layers according to strips orientation.
- 2. Select a strip which has the largest output in X layers. The strip is called seed strip.
- 3. Connect seed strip and the neighbor strips (upper, lower, left, right, forward and backward) (E of neighbor strip <= 1.2*(E of seed strip))
- 4. Connected strips are defined as new seeds.

 Repeat 3 until no more neighbor strip remains.
- 5. Using other strips, repeat 2 4.
- 6. For Y layers, make clusters using the same method.
- 7. Finally, the Y cluster is connected to the X cluster, in case energy center of a cluster in Y layers is located within +- 2.85 cm in X and Y from energy center of a cluster in X layers.

** This strip clustering is not the official algorithm for ScECal.

Reconstructed Invariant Mass from 2 Clusters

Very preliminary results of π^0 mass reconstruction

 π^0 detection is successful!

Next Beam Test

Additional beam test for ScECal second prototype will be started on 20 April (to 28 May).

Motivation

- •energy scan at more energy points
 - -1, 2, 3, 4, 6, 8, 10, 12, 15, 16, 20, 25, 30, 32 GeV
 - Both positive and negative beams available
- •Take more π^0 data at more energy points
- Position dependence of resolution / linearity
- •Tilt angle scan (20, 30 degrees)
- •higher energy pion (up to 60 GeV) data taking

Summary

- Study of the Scintillator-strip ECAL is extensively underway in CALICE collaboration.
- Development of base components (strip + MPPC) is in good shape and almost done.
- Beam Test has been performed to establish feasibility of the ScECAL.
 - Observing event shape with the fine granular calorimeter.
 - Energy resolution, Linearity comparable with expectation.
 - First trial of π^0 reconstruction with the ScECAL is successful.
- Next step: Further improvement of base component and simulation study.
- Additional ScECal beam test will be started on 20 April to 28 May at FNAL.