
Measurement of Top-Yukawa coupling at ILC

Ryo Yonamine

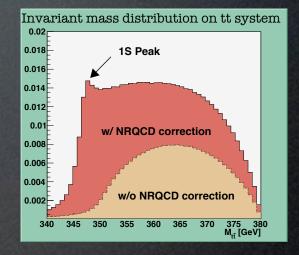
Katsumasa Ikematsu^A, Satoru Uozumi^B,Keisuke Fujii^A (ILC Physics TTH subgroup)

Sokendai(KEK), KEK^A, Kobe Univ.^B

TILC09 2009.04.19

What we want to do is to measure Top-Yukawa coupling. Because ...

- Direct measurement of Top-Yukawa coupling is important to understand mass generation in SM.
- Top-Yukawa coupling is expected to be the strongest.

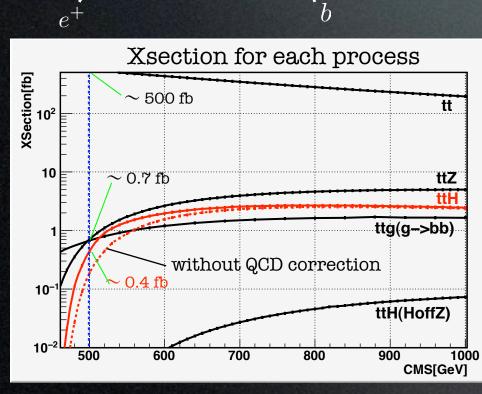

Top-Yukawa coupling g_{tth}^2 is proportional to Xsection σ_{tth} .

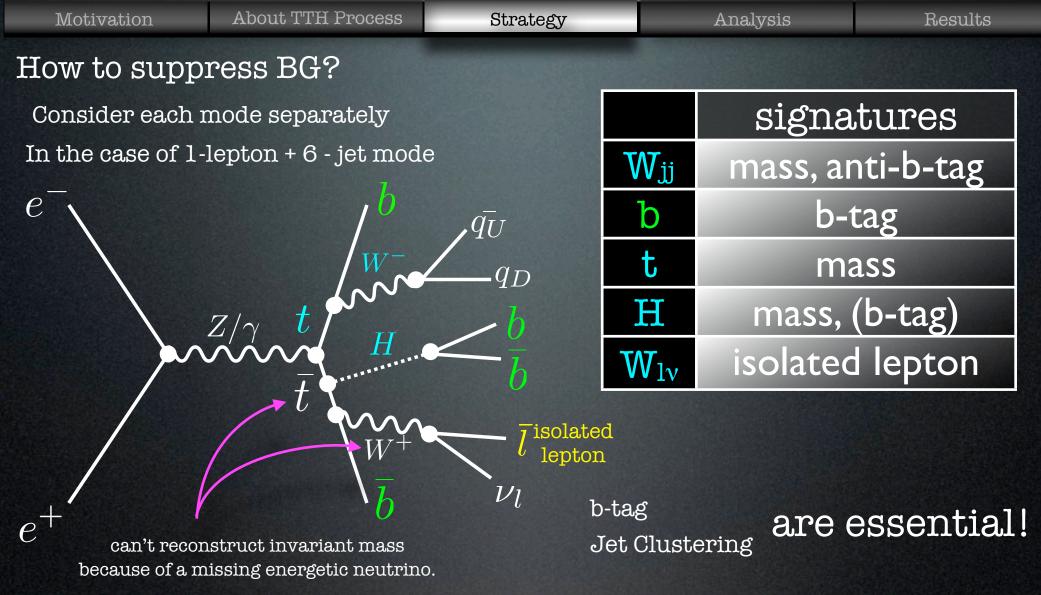
→ Measurement for Top-Yukawa coupling is a kind of counting experiment.

Motivation	About TTH Process	Strategy	Analysis	Results
TTH diagram(ir	h the case of H \rightarrow bl	b)		
e	Z/γ t H	rmion fermion In th $b \\ \cdot \bar{b} $	e case of H→bb <mark>1-lepton + 6-jet</mark> 8-jet 2-lepton + 4-jet	~45% () ~44% ~11%

fermion

Effect of QCD threshold enhancement

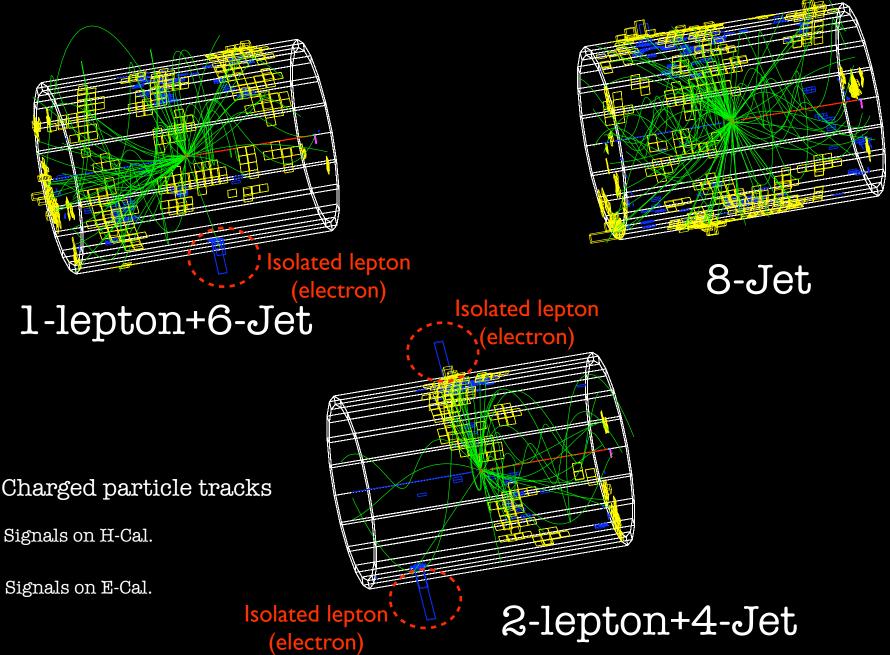

Our TTH event generator includes this QCD enhancement


 $E_{CM} = 500[GeV]$

 $M_{\rm H} = 120[{\rm GeV}]$

 $M_{top} = 175[GeV]$

No electron polarization at this moment

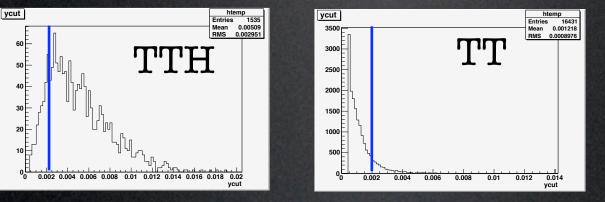


Why TTZ, TTg, TT can be B.G.?

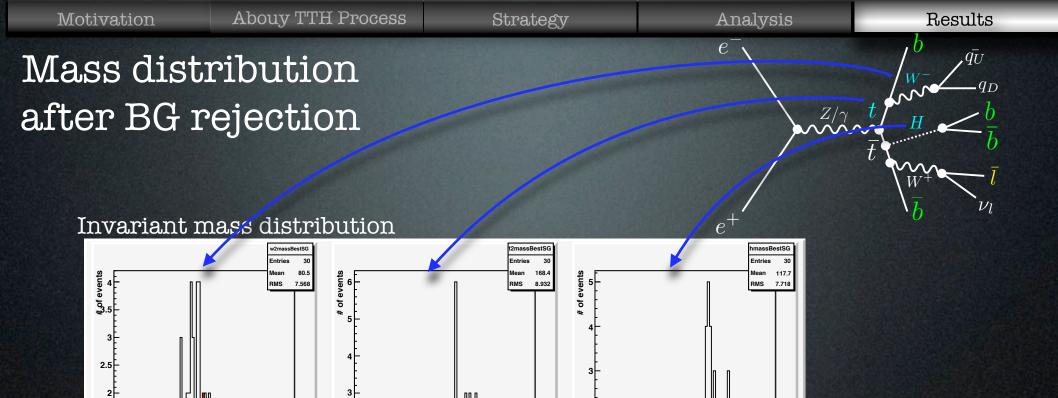
	TTZ, TTg	TT
reason	similar signature	mis-clustering
key for BG rejection	Z mass, g mass	b-tag, jet clustering

Strategy

Event Display with Quick Simulator



2. Forced n-jet clustering always makes n jets by adjusting Y_{CUT} automatically for every event.


If we apply Forced 6-Jet Clustering for 4-Jet event, Ycut will be small.

Motivation	About TTH Process	Strategy	Analysis	Results
b-tag				
n-sig metho	d			
n-sig method	1			
Given the d	listance between a	tracks and IP, $~\ell$		
and th	ne measurement er	ror, σ_ℓ		
		P		
define the tra	ick as "off vertex tr	rack" if $\stackrel{\tau}{-\!\!-\!\!-}$ is over	r a certain value	
		σ_ℓ		
define the jet	as b-jet if the numb	ber of "off vertex tr	acks" in a Jet is ov	er a certain value.
				~ ~

	li ····			
Inte	eraction	Decay of		
	Point	b-hadron		
	l\			

Motivation Abouy		H Process Strategy		Analysis		Results	
Cut	Cut Statistics Preliminary						
l-lepton + 6-jet mode 1000fb				OOfb⁻¹			
		TTH	T	'nΤΖ	T	T	
	No Cut (1L+ 6-Jet)	440 (200)	7	*10	5×3	10 ⁵	
	# of isolated lepton = 1	154	2	32	173	386	
		Forced 6-Jet clustering					
	Ycut > 0.002	135	1	.73	215	577	
	4 b-tag + Mass Cut (W, t, H)	25		6	4	1	

Need more statistics -

80 100 120 140 160 180 200 220 240

t2mass

In the case of 1000 fb^{-1}

60 80 100 120 140 160 180

W2mass

1.5

0.5

0

40

20

TTHTTZTTevents2564Significance : $\frac{25}{\sqrt{(25+6+4)}} \sim 4$

60

Preliminary

80 100 120 140 160 180

hmass

40 60

20

0

TTH

TTZ

TT

Summary

We made a simulation study in order to evaluate the feasibility of measuring Top-Yukawa coupling at 500GeV.

The QCD correction increases the signal X-section roughly by a factor of two due to the threshold enhancement for the t-tbar sub-system.

We haven't yet considered the ttg BG , which might be the main back ground. If it is controllable, we can measure Top-Yukawa coupling at even E_{CM} = 500GeV.

Present problem & Next Step

increase B.G. statistics ttg(g->bb) B.G. (Strategy: invariant mass of gluon) Beam polarization of electron & positron 8-Jet mode H-> WW*(15%) Better jet clustering method & better b-tag are wanted for better S/N Move on to full simulation for more precise estimation