

AAP Review - Electron Source

Axel Brachmann SLAC

AAP Review Meeting, Tsukuba, April 2009

1

ir

The Baseline Source

Electron source provides polarized electron beam and consists of all systems from source laser to 5 GeV injection to damping rings.

Source Parameters

Parameter	Symbol	Value	Unit
Electrons per bunch (at gun exit)	n _e	3 x 10 ¹⁰	Number
Electrons per bunch (at DR injection)	n _e	2 x 10 ¹⁰	Number
Number of bunches	N _e	~ 3000	Number
Bunch repetition rate	$F_{\mu b}$	3	MHz
Bunch train repetition rate	F _{mb}	5	Hz
Bunch length at source	∆t	~ 1	ns
Current in bunch at source	l _{avg}	3.2	Α
Energy stability	S	< 5	% rms
Polarization	P _e	80 (min)	%
Photocathode quantum efficiency	QE	0.5	%
Drive laser wavelength	λ	790 ± 20	nm
Single bunch laser energy	E	5	μJ

ir iit

- Complete set of optics from Gun to DR is available
- Low Energy simulations : include space charge

Example: Beam envelope along the NC injector

➢ 95% of electrons produce by the DC gun are captured within 6-D damping ring acceptance:

 γ (Ax+Ay) \leq 0.09m and Δ E x Δ z \leq (±25 MeV) x (±3.46 cm)

- Source Laser System
 - This is primarily an engineering task
 - Challenge is to integrate various state of the art laser technology aspects into one system that is matched to Photocathode and Gun
- DC Gun
 - High Voltage/High Gradient to counteract space charge forces
 - UHV technology (10⁻¹² Torr)
- Photocathodes
 - Main issue is the surface charge limit
 - QE/Polarization

;lr

R&D Program

Active R&D focus on 'critical' issues and accelerator physics:

- SLAC:

- Laser system development
- Photocathode R&D
- Optics design

– Jlab

- DC Gun development
- Japan
 - Anticipate continuation of Univ. of Nagoya Photocathode and DC gun work at KEK
- SBIR (DOE sponsored Industry collaboration)
 - Laser and photocathode R&D

- RF guns for polarized beams
 - BNL: SC RF Gun
 - FNAL: NC RF Gun Plain Wave Transformer
- Source development at test facilities

– E.g. STF @ KEK (but unpolarized)

- New method of generating polarized electrons from GaAs without NEA requirement
 - See talk by H. Tomizawa (Spring 8)

Laser System Development

ilr Ill

Laser R&D progress

- Development of amplifier seed
 - Modelocked oscillator
 - Optical pulse stretching to 600 ps 1 ns
- Successful test of pulse switching at 3 MHz
 - component of regenerative amplifier
- Current work
 - 40 W frequency doubled cw Yb:YAG laser
 - Re-engineering of amplifier pump laser
- For regenerative amplifier a cryogenically cooled Ti:Sapphire crystal will be used
- next

now

Suppression of thermal lensing

Generation of 3 MHz seed pulse train

Switching of 79 MHz modelocked seed laser with 3 MHz Pockels cell:

AAP Review Tsukuba, April 2009

Photocathode Research

Baseline Design: GaAs/GaAsP

• Semiconductor engineering to optimize current designs to ILC conditions:

;lr

- Use of SLAC's polarized source development facility
- Faraday Rotation System to study depolarization mechanism
- Testing of various alternatives to GaAs/GaAsP → InAlGaAs, AlGaAs
- Co-deposition of alkali elemements enhances cathode lifetime, improves robustness
 - traditionally Cs only; new techniques e.g. Cs+Li
 - SBIR/SLAC collaboration (SBIR partner: SAXET Surface Science, Inc)
- Most important question remains:
 - Surface charge limit
 - → needs ILC laser system

Surface charge limit

- Photon absorption excites electrons to conduction band
- Electrons can be trapped near the surface; electron escape prob. < 20%
- Electrostatic potential from trapped electrons raises affinity
- Affinity recovers after electron recombination
- Increasing photon flux counterproductive at extremes

Optimization: Caveat:

Adjustment of doping level Negative effect on Polarization

Measurement at ms time scale is required!

DC Gun Research

- Based on past experience at SLAC and Jlab
- Currently Gun R&D program is carried out at Jlab under Matt Poelkers leadership
- Synergy with CEBAF injector development
 - \rightarrow Beneficial to ILC

- UHV technology (vacuum system, materials)
- HV design (power supply, normal vs. inverted)
- Geometry of Pierce electrodes optimization for ILC beam

- Minimum Machine does not change e- source parameters → fundamental design changes are unlikely
- Single tunnel design is feasible in general
- Questions :
 - Tunnel space sharing (multiple beam lines) needs CAD model and evaluation :
 - → International working group for 3D visualization
 - RF distribution :
 - \rightarrow adopt main linac solution for SC part of the source

- RDR design remains baseline
- Activities focus on R&D to solve critical source issues:
 - Source Laser system
 - DC Gun for polarized beams
 - Photocathodes
- Goal is to demonstrate nominal ILC beam using optimized photocathodes, laser system and DC Gun
- \rightarrow integrated injector test lab