TILC'09, Tskuba, Japan, 17-21 April 2009

SiD FCAL

Takashi Maruyama Tom Markiewicz

SLAC

Contributors:

SLAC M. Breidenbach FNAL W. Cooper G. Haller K. Krempetz T. Markiewicz BNL W. Morse T. Maruyama Oregon D. Strom M. Oriunno Colorado U. Nauenberg J. Gill G. Oleinik

SiD Forward Region

SiD Forward Region

Centered on the outgoing beam line

SiD Forward Region

Tungsten Mask

No "FHCAL" as only physics motivation is muon identification in this angular region, which is accomplished by identifying MIPs in LumiCal.

3cm is currently chosen thickness (507kg)

1000 of 35k backscattered photons penetrate mask and are spread uniformly across inner surface of endcap HCAL

Hermaticity

Effort made to minimize radius of FCAL package and to minimize gap between endcap ECAL and FCAL

LumiCal Outer Radius: 19.5cm

(to match QD0 cryostat radius)

Gap to endcap: 1.0 cm

To recover solid angle from IP, Lumical position 10cm closer to IP than from face of endcap ECAL

6/24

LumiCal

- Calorimeter coverage
 - 41 < θ < 120 mrad
 - 6cm inner hole, centered on extraction line
- Precision integrated luminosity measurement
 - Fiducial volume: $46 < \theta < 86$ mrad
- Luminosity spectrum dL/dE
 - \sqrt{s} is not monochromatic due to beamstrahlung emission

Energy resolution

Deposited Energy / Eir

20 layers of 2.5mm W+ 10 layers of 5.0mm W

- Energy resolution parameter is dependent on energy
 - 15%/ \sqrt{E} at low energy
 - 20%/ √E at high energy
- Energy leakage is small even at 500 GeV.

Luminosity measurement

- Luminosity precision goal $\Delta L / L < 10^{-3}$
 - 10⁶ W⁺W⁻ events in 5 years (500 fb⁻¹)
- $\Delta L/L = (N_{rec} N_{gen})/N_{gen}$
 - Bhabha d σ /d θ ~ 1/ θ^3
 - $\Delta L/L \sim 2 \Delta \theta/\theta_{min}$, $\Delta \theta$ is a systematic error.
- $\Delta\theta$ must be less than ~20µrad to reach $\Delta L/L = 10^{-3}$.
 - Detector radial location must be know within 30µm.
- Bhabha event rate
 - N_{ev} / BX @ILC 500 Nominal=
 5.9 [1/θ²_{min} 1/θ²_{max}] (θ in mrads)
 - 30 ev/sec for θ_{min} =46 mrad, θ_{max} =86 mrad

$\Delta L/L$ vs. segmentation

Radial segmentation $N\phi = 32$				
∆r	$\Delta \theta$	σ(θ)	∆L/L	
(mm)	(mrad)	(mrad)		
2.0	0.008	0.042	3.3×10 ⁻⁴	
2.5	0.017	0.046	7.9×10 ⁻⁴	
3.0	0.023	0.050	1.0×10 ⁻³	
4.0	0.036	0.058	1.7×10 ⁻³	
5.0	0.049	0.069	2.2×10 ⁻³	

...

 \sim

ϕ segmentation $\Delta r = 2.5$ mm

Nφ	Δθ	σ(θ)	∆L/L
	(mrad)	(mrad)	
16	0.017	0.046	7.7×10 ⁻⁴
32	0.017	0.046	7.9×10 ⁻⁴
48	0.017	0.045	7.6×10 ⁻⁴
64	0.014	0.045	6.6×10 ⁻⁴

- $\Delta L / L < 10^{-3}$ can be reached by $\Delta r < 3$ mm.
- - Finer ϕ segmentation will help shower separation.

Max Energy Deposition in Si channel

50

- Max energy deposition
 160 MeV (7010 fC*)
- MIP
 - MPV~0.0925 MeV (4.1 fC)
- Bhabha ~ 1710 MIP
- If we want S/N ~ 10 for MIP, we need 17,000 dynamic range.
 - 2 gains + 10 bit ADC

* 3.65 eV to generate e-h pair

Pairs in LumiCal

and >4000 e+/e-/train hit the LumiCal.

Pair occupancy in LumiCal

- 1.5 e+/e- / BX reaching LumiCal
- Hits are mostly in the front ~10 layers.
- Inner most channels have more than 4 hits.

 $\Delta r = 2.5 \text{ mm}, N\phi = 32$

KPiX has only 4 buffers.

Need a new chip being developed for the BeamCal. Hits per Train

LumiCal sensor design

- Based on 6" wafer.
- The inner radius centered on the out-beam, while the outer radius on the detector.
- 14 petals are all different; need different Masks.
- $\Delta r = 2.5 \text{ mm}, \Delta \phi = 10^{\circ}(N\phi=36)$
- Radial division varies from 46 to 54 channels.
- Non-projective geometry; same sensors in depth-wise.

Bhabha events in LumiCal

BeamCal

- Extend calorimeter coverage to small angle
 - $-7 < \theta < 44 \text{ mrad}$
- High energy electron detection
 - Provide two-photon veto for new particle searches
- Instantaneous luminosity measurement using beamstrahlung pairs

- Pair production is proportional to luminosity

$\gamma\gamma$ Veto in Pair Backgrounds

 Under SUSY dark matter scenarios, slepton & neutralino masses are nearly degenerate.

```
M. Battaglia et al. hep-ph/0306219

• Search & measure stau with \Delta m = 3 - 9 \text{ GeV}
```

Signal ee →τχτχ σ~10 fb P. Bambade et al. hep-ph/0406010 Major background $ee \rightarrow (e)(e)\tau\tau$ $\sigma \sim 10^{6} \text{ fb}$

- $\gamma\gamma$ veto is crucial.
 - High energy electron detection in beamstrahlung pair background

Detector-Integrated-Dipole

High energy electron detection

http://hep-www.colorado.edu/~uriel/Beamstrahl_TwoPhoton-Process/grp_results.html

BeamCal Sensor

- Based on 6" Si wafer
- Centered on the outgoing beam line
- Two regions
 - R=2.0 7.5 cm (7 mrad 25 mrad)
 BeamCal where beamstrahlung pairs hit.

5mm x 5mm R ϕ segmentation

- R=7.5 - 12.5 cm (25 – 42 mrad) LumiCal extension, no beamstrahlung pairs Δ R=2.5mm, $\Delta \phi = 10^{\circ}$

High occupancy and high radiation

- 100% occupancy R < 5 cm.
 - Need a new chip to store every bunch crossing.
 - KPIX with 1024 channels & 4 buffers for ECAL
 - New FCAL chip with 64 channels, 2820 buffers $\rightarrow R\&D$
- Highest radiation dose ~100 MRad/year.
- Neutron fluence $5 \times 10^{13} \text{ n}_{s}/\text{cm}^{2}/\text{year}$ – Need radiation hard sensors. $\rightarrow R\&D$

Unresolved Issues

LumiCal

- Readout design
- Petal-to-Petal dead space
- Reproducible alignment to < 30 um and verification

BeamCal

- Choice of sensor
- Readout design
- Petal-to-Petal dead space
- Electronics cooling

BeamPipe

- HOM heating, cooling & wakefields due to abrupt radial transitions
- Global FCAL
 - Integration
 - Installation and servicing

Forward Integration

Deformations in mm

Summary

- Good enough progress has been made to write the LoI.
- We still have to resolve many issues before we can write TDR.