Study of $\tilde{\tau}$ pair production in SPS1a'

Mikael Berggren¹

¹DESY, Hamburg

TILC09, Tsukuba, April 2009

Mikael Berggren (DESY)

Study of $\tilde{\tau}$ pair production in SPS1a'

TILC09 Tsukuba 1 / 14

< ロ > < 同 > < 回 > < 回 >

Outline

Introduction

\bigcirc The $ilde{ au}$ channel

Analysis

- $\gamma\gamma$ suppression
- Suppress beam-background
- Finding τ :s
- The $\tilde{\tau}$ mass

5 Conclusions

< E

< (□) < 三 > (□)

Introduction

What can be done if SUSY exists, and is "next to LEP", and we use a real detector ?

- Study SPS1a'
- Weak-scale parameters with SPheno
- Whizard for event simulation (Produced at DESY)
- GuineaPig for beam-background
- DESY mass-production for both SUSY and SM:
 - Full simulation: ILD_00 in Mokka
 - Reconstruction using Marlin
- Study τ channels

People involved

- Olga Stempel, Peter Schade.
- Supervisors: J. List, P. Bechtle, M.B.

< ロ > < 同 > < 回 > < 回 >

SPS1a

SPS1a'

Pure mSUGRA model:

$$M_{1/2} = 250 \ GeV, M_0 = 70 \ GeV, A_0 = -300 \ GeV,$$

tan $\beta = 10, sign(\mu) = +1$

Just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_1^0$ Dark Matter.

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}^0_3$ (in $e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_3$)

< ロ > < 同 > < 回 > < 回 >

- In SPS1a', the $\tilde{\tau}$ is the NLSP. $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}/c^2, M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$, so $\Delta(M) = 10.2 \text{ GeV}/c^2$.
- $P_{\tilde{\tau},min} = 2.2 \text{ GeV}/c$, $P_{\tilde{\tau},max} = 42.8 \text{ GeV}/c$: $\gamma \gamma$ background.
- Plays an important role for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The τ̃ mass-eigen states ≠ chiral-eigen states Off-diagonal term of mass-matrix: -M_τ(A_{τ̃} - μ tan β).
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

Polarisation = (0.8, -0.3) assumed.

- In SPS1a', the $\tilde{\tau}$ is the NLSP. $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}/c^2, M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$, so $\Delta(M) = 10.2 \text{ GeV}/c^2$.
- $P_{\tilde{\tau},min} = 2.2 \text{ GeV}/c$, $P_{\tilde{\tau},max} = 42.8 \text{ GeV}/c$: $\gamma \gamma$ background.
- Plays an important role for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The τ̃ mass-eigen states ≠ chiral-eigen states Off-diagonal term of mass-matrix: -M_τ(A_{τ̃} - μ tan β).
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

Polarisation = (0.8, -0.3) assumed.

- In SPS1a', the $\tilde{\tau}$ is the NLSP. $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}/c^2, M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$, so $\Delta(M) = 10.2 \text{ GeV}/c^2$.
- $P_{\tilde{\tau},min} = 2.2 \text{ GeV}/c$, $P_{\tilde{\tau},max} = 42.8 \text{ GeV}/c$: $\gamma \gamma$ background.
- Plays an important role for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The τ̃ mass-eigen states ≠ chiral-eigen states Off-diagonal term of mass-matrix: -M_τ(A_{τ̃} μ tan β).
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

Polarisation = (0.8, -0.3) assumed.

- In SPS1a', the $\tilde{\tau}$ is the NLSP. $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}/c^2, M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$, so $\Delta(M) = 10.2 \text{ GeV}/c^2$.
- $P_{\tilde{\tau},min} = 2.2 \text{ GeV}/c$, $P_{\tilde{\tau},max} = 42.8 \text{ GeV}/c$: $\gamma \gamma$ background.
- Plays an important role for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The τ̃ mass-eigen states ≠ chiral-eigen states Off-diagonal term of mass-matrix: -M_τ(A_{τ̃} μ tan β).
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

Polarisation = (0.8, -0.3) assumed.

Extracting the $\tilde{\tau}$ properties

From decay kinematics:

- $M_{\tilde{\tau}_1}$ from $M_{\tilde{\chi}_1^0}$ and end-point of spectrum = $P_{\tau,max}$.
- In principle: $M_{\tilde{\chi}_1^0}$ turn-over of spectrum = $P_{\tau,min}$, but hidden in $\gamma\gamma$ background.

Need to measure end-point of spectrum.

Must get $M_{\tilde{\chi}_1^0}$ from other sources. $\Delta(M_{\tilde{\chi}_1^0}) \approx 1 \text{ GeV}/c^2$ from the $\tilde{\mu}_L$ analysis - the only studied by ILD up to now. This error would \approx half, once all $\tilde{\mu}$ and \tilde{e} channels are used

イロン イロン イヨン イヨン 三日

Extracting the $\tilde{\tau}$ properties

From decay kinematics:

- $M_{\tilde{\tau}_1}$ from $M_{\tilde{\chi}_1^0}$ and end-point of spectrum = $P_{\tau,max}$.
- In principle: $M_{\tilde{\chi}_1^0}$ turn-over of spectrum = $P_{\tau,min}$, but hidden in $\gamma\gamma$ background.

Need to measure end-point of spectrum.

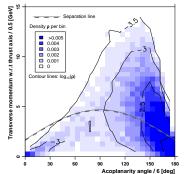
Must get $M_{\tilde{\chi}_1^0}$ from other sources. $\Delta(M_{\tilde{\chi}_1^0}) \approx 1 \text{ GeV}/c^2$ from the $\tilde{\mu}_L$ analysis - the only studied by ILD up to now. This error would \approx half, once all $\tilde{\mu}$ and \tilde{e} channels are used

$\gamma\gamma$ suppression

$\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background } \dots$

- Correlated cut in ρ and θ_{acop}: ρ > 3 sin θ_{acop} + 1.7. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

3

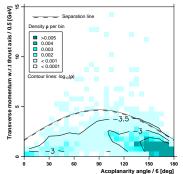

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analysis $\gamma\gamma$ suppression

$\gamma\gamma$ suppression

 $\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background } \dots$

- Correlated cut in ρ and θ_{acop}:
 ρ > 3 sin θ_{acop} + 1.7. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.


< ロ > < 同 > < 回 > < 回 >

Analysis $\gamma\gamma$ suppression

$\gamma\gamma$ suppression

 $\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background } \dots$

- Correlated cut in ρ and θ_{acop}:
 ρ > 3 sin θ_{acop} + 1.7. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

$\gamma\gamma$ suppression

$\gamma\gamma$ suppression

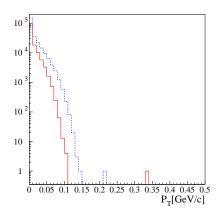
$$\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma$$
 background ...

- Correlated cut in ρ and θ_{acop}:
 ρ > 3 sin θ_{acop} + 1.7. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

< ロ > < 同 > < 回 > < 回 >

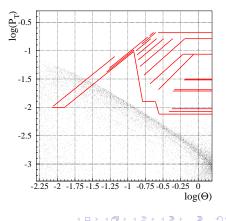
$\gamma\gamma$ suppression

$$\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma$$
 background ...

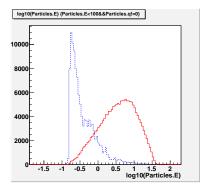

- Correlated cut in ρ and θ_{acop}:
 ρ > 3 sin θ_{acop} + 1.7. (ρ = P_T of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

- A - TH

- Generate 1000 bunch-crossings with GuineaPig.
- Signal:
 - For each generated event, pick one bunch crossing at random, and add the beam-strahlung pairs (125 000...) to it.
 - Run through Full Simimualtion and Reconstruction.
- Background:
 - Add simulated and reconstructed beam-background only events on beam-background free, fully simulated and reconstructed physics events → under-estimate pattern rec. problems.

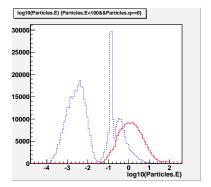

< ロ > < 同 > < 回 > < 回 >

- Most beam-background tracks seen in the tracker are low P_T
- or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.

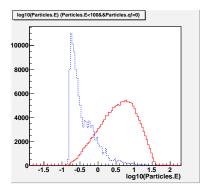


< 6 b

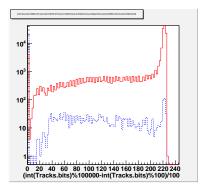
- Most beam-background tracks seen in the tracker are low P_T
- or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.



- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.


< ロ > < 同 > < 回 > < 回 >

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : $E > 500 \mathrm{MeV}$
- ... and demand associated TPC hits for charged.



< ロ > < 同 > < 回 > < 回 >

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : E > 500 MeV
- ... and demand associated TPC hits for charged.

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : $E > 500 \mathrm{MeV}$
- ... and demand associated TPC hits for charged.

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- Ind when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

Mikael Berggren (DESY)

TILC09 Tsukuba 10 / 14

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- End when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- Ind when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

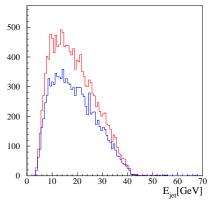
TILC09 Tsukuba 10 / 14

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- Ind when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder:


- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- Ind when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

Mikael Berggren (DESY)

TILC09 Tsukuba 10 / 14

Performs better than Durham forced to two jets already without background:

BLUE: Durham, RED: DELPHI

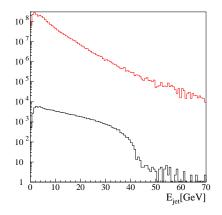
Study of $\tilde{\tau}$ pair production in SPS1a'

ъ.

< 🗇 🕨

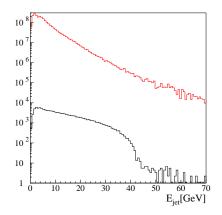
• Extract the signal.

- Exactly two jets.
- Charge of each jet = ± 1 ,
- $E_{within \ 30^{deg}}$ to beam < 4 GeV
- $M_{vis} > 20 \text{ GeV}/c^2$,
- anti- $\gamma\gamma$ cut,
- $E_{vis} < 120 \text{ GeV},$
- Two jets with charge \pm 1,
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $\cos \theta_{acop} < -0.2$,
- $|\cos \theta_{missing p}| < 0.75$,


Efficiency 11.2 %. Without Beam-background: Efficiency 11.8 % (+5%), but: backround +15% (the background *is* two τ :s !)

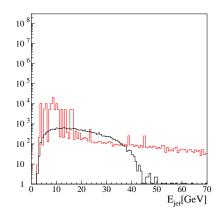
3

• Extract the signal.

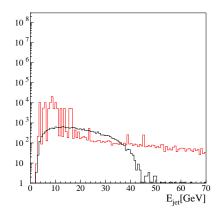

Exactly two jets.

- Charge of each jet = ± 1 ,
- $E_{within \ 30^{deg}}$ to beam < 4 GeV
- $M_{vis} > 20 \text{ GeV}/c^2$,
- anti- $\gamma\gamma$ cut,
- $E_{vis} < 120 \text{ GeV},$
- Two jets with charge \pm 1,
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $\cos \theta_{acop} < -0.2$,
- $|\cos \theta_{missing p}| < 0.75$,

Efficiency 11.2 %

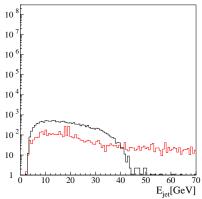

- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - $E_{within \ 30^{deg}}$ to beam < 4 GeV
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - $E_{vis} < 120 \text{ GeV},$
 - Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos \theta_{missing p}| < 0.75$,

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

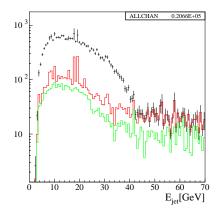

Efficiency 11.2 %

- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - $E_{within \ 30^{deg}}$ to beam < 4 GeV
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - $E_{vis} < 120 \text{ GeV}$,
 - Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos \theta_{missing p}| < 0.75$,

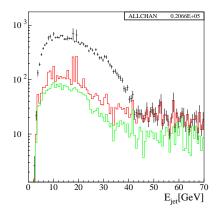
Efficiency 11.2 %


- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - Ewithin 30deg to beam < 4 GeV
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - $E_{vis} < 120 \text{ GeV},$
 - Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos \theta_{missing p}| < 0.75$,

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

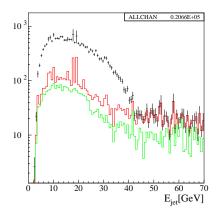

Efficiency 11.2 %

Extract the signal. Exactly two jets. • Charge of each jet = ± 1 , • $E_{within \ 30^{deg}}$ to beam < 4 GeV • $M_{vis} > 20 \text{ GeV}/c^2$, • anti- $\gamma\gamma$ cut, • $E_{vis} < 120 \text{ GeV}$, • Two jets with charge ± 1 , • $|\cos \theta_{iet}| < 0.9$ for both jets, • $\cos \theta_{acop} < -0.2$, • $|\cos\theta_{missing p}| < 0.75$,


Efficiency 11.2 %

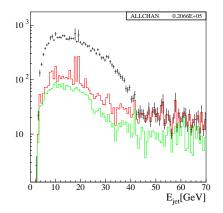
- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - Ewithin 30deg to beam < 4 GeV
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - $E_{vis} < 120 \text{ GeV},$
 - Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos \theta_{missing p}| < 0.75$,

Efficiency 11.2 %


- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - $E_{within \ 30^{deg}}$ to beam < 4 GeV
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - $E_{vis} < 120 \text{ GeV},$
 - Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos \theta_{missing p}| < 0.75$,

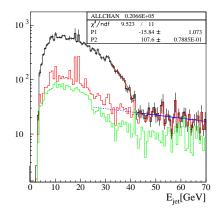
• • • • • • • • • • • •

Efficiency 11.2 %.


- Extract the signal.
 - Exactly two jets.
 - Charge of each jet = ± 1 ,
 - $E_{within \ 30^{deg}}$ to beam < 4 GeV
 - $M_{vis} > 20 \text{ GeV}/c^2$,
 - anti- $\gamma\gamma$ cut,
 - $E_{vis} < 120 \text{ GeV},$
 - Two jets with charge \pm 1,
 - $|\cos \theta_{jet}| < 0.9$ for both jets,
 - $\cos \theta_{acop} < -0.2$,
 - $|\cos \theta_{missing p}| < 0.75$,

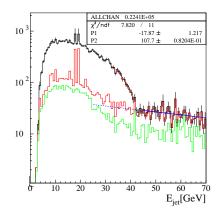
Efficiency 11.2 %.

Fitting the $\tilde{\tau}$ mass


- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.
- $M_{\tilde{\tau}_1} = 107.60 \pm 0.08 \text{ GeV}/c^2$ Without beam-background: $M_{\tilde{\tau}_1} = 107.65 \pm 0.08 \text{ GeV}/c^2$.

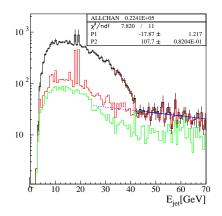
NB: $dM_{\tilde{\chi}_1^0} \approx 1.3$, and $\Delta(M_{\tilde{\chi}_1^0}) \approx 1 \text{GeV}/c^2$ from the $\tilde{\mu}_L$ analysis, so the error from M_{π^0} largely dominates.

Fitting the $\tilde{\tau}$ mass


- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.
- $M_{\tilde{\tau}_1} = 107.60 \pm 0.08 \text{ GeV}/c^2$ Without beam-background: $M_{\tilde{\tau}_1} = 107.65 \pm 0.08 \text{ GeV}/c^2$.

NB: $dM_{\tilde{\chi}_1^0} \approx 1.3$, and $\Delta(M_{\tilde{\chi}_1^0}) \approx 1 \,\text{GeV}/c^2$ from the $\tilde{\mu}_L$ analysis, so the error from M_{r^0} largely dominates.

Fitting the $\tilde{\tau}$ mass


- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.
- $M_{\tilde{\tau}_1} = 107.60 \pm 0.08 \text{ GeV}/c^2$ Without beam-background: $M_{\tilde{\tau}_1} = 107.65 \pm 0.08 \text{ GeV}/c^2$.

NB: $dM_{\tilde{\tau}}/dM_{\tilde{\chi}_1^0} \approx 1.3$, and $\Delta(M_{\tilde{\chi}_1^0}) \approx 1 \text{GeV}/c^2$ from the $\tilde{\mu}_L$ analysis, so the error from $M_{\tilde{\chi}_1^0}$ largely dominates.

Fitting the $\tilde{\tau}$ mass

- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.
- $M_{\tilde{\tau}_1} = 107.60 \pm 0.08 \text{ GeV}/c^2$ Without beam-background: $M_{\tilde{\tau}_1} = 107.65 \pm 0.08 \text{ GeV}/c^2$.

NB: $dM_{\tilde{\tau}}/dM_{\tilde{\chi}_1^0} \approx 1.3$, and $\Delta(M_{\tilde{\chi}_1^0}) \approx 1 \text{GeV}/c^2$ from the $\tilde{\mu}_L$ analysis, so the error from $M_{\tilde{\chi}_1^0}$ largely dominates.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included. .
- Beam-background included. .
- $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included. .
- Beam-background included. .
- $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included. .
- Beam-background included. .
- $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included. .
- Beam-background included. .
- $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included. .
- Beam-background included. .
- $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$
- Beam-background: decreases signal by %5, but also decreases (physics) background by 15 %.