ILD LOI

Part-II: Detector

Y. Sugimoto KEK for ILD concept group

Outline

ILD LOI - table of contents

- 1. Introduction
- 2. Detector Optimization
- 3. Physics Performance
- 4. The ILD Sub-Detector Systems
- 5. Data Acquisition and Computing
- 6. Detector Integration/Machine Detector Interface
- 7. Costing
- 8. The ILD Group
- 9. R&D Plan
- 10. Conclusion

ILD basic concept

- Precision experiment at ILC
- Unprecedented resolution, efficiency, redundancy, and hermeticity are required for ILD
 - Identification of quark flavor → Precision pixel vertex detector
 - Charged track measurement with high resolution and high efficiency → TPC and Si trackers
 - Identification of W and Z in 2-jet decay mode → CAL optimized for PFA
 - High magnetic field of 3.5 T
 - Forward CAL covering very small angle to veto 2-photon events

The ILD Sub-detector Systems

Vertex detector

- Structure: Two options
 - 5 single layers and 3 doublet layers (total 6 layers)
- Sensors: Several options
 - FPCCD / CMOS / DEPFET / ISIS / 3D / etc.
- Target performance:
 - Single point resolution: < 3 μm
 - Material budget: ~ 0.1%X₀ / layer
 - Inner radius: ~ 15 mm
 - Impact parameter resolution: 5 ⊕ 10/pβsin^{3/2}θ μm/GeV

Vertex detector

Alignment

- Positioning of detector
 - VTX (and beam pipe) has to be aligned <1mm with respect to the beam after every push-pull operation because clearance between the beam pipe and dense core of pair-background is <2mm
 - The positioning together with SIT (or even with TPC) will be done quickly by mechanical mover
- Measurement of detector position
 - Detector position measurement has to be done with an accuracy of <<3μm
 - This will be done by track based alignment
 - Overlaps between ladders give information of ladder-to-ladder alignment using >few GeV tracks
 - Alignment between VTX and outer trackers will be done using straight tracks, like muons from Z pole run

Power pulsing issue

- Some sensor technologies assume power pulsing to reduce power consumption by factor of ~100
- Power pulsing could cause vibration by Lorentz force
- Power pulsing test in strong magnetic field has to be done before sensor technology choice (2012 or later)
- 5T small bore solenoid at DESY will do for small scale tests (it has already been used for calorimeter electronics and others)

Si trackers

- Si Internal Tracker (SIT)
 - 2 layers of false double-sided Si strip between Vertex detector and TPC (barrel region)
 - Time stamping

(both sides)

- Si External Tracker (SET)
 - Placed between TPC and barrel ECAL
 - Single layer of false-double-sided Si strip
- Forward Tracking Detector (FTD)
 - Covers very forward region (inside TPC)
 - 3 pixel layers + 4 Si strip layers
- **Endcap Tracking Detector (ETD)**
 - Placed between TPC end plate and endcap ECAL
 - 3 layers of single-sided Si strip (XUV)

TPC

- Large number of sampling points in r\u03c4z → Robust tracking
- High spatial resolution (<100μm/sampling in rφ) → High p_t resolution
- Low material budget (~4%X₀)
- TPC in a high (3.5T) B field
 - Strong bending power
 - Improvement of point resolution and two-track separation by suppression of transverse diffusion of drifting electrons
- Other advantages of TPC
 - Continuous sampling \rightarrow reconstruction of V⁰ particles (K⁰s, Λ , new particles)
 - Particle ID by dE/dx measurement (<5% resolution)

TPC

- Design (goal) of ILD TPC
 - Micro patter gas detector (MPGD) as the TPC endcap detector
 - Three options of MPGD and readout scheme are considered:
 - GEM with small pad r.o.
 - MicroMEGAS with resistive anode r.o.
 - CMOS pixel r.o. (Ingrid TimePix)
 - 0.4m<R<1.8m, |Z|=2.15m
 - σ_{point}(rφ)<100μm
 - $-\sigma_{point}(z)\sim 0.5$ mm
 - Two-hit resolution $\sim 2mm(r\phi)$, 6mm(z)
 - Material budget ~4%X₀ (r), 15%X₀ (endplate)
 - Momentum resolution:
 - $\delta(1/p_t)\sim 9e-5/GeV/c$ (TPC only)
 - $\delta(1/p_t)\sim 2e-5/GeV/c$ (all trackers)

MicroMEGAS

GEM

Ingrid TimePix

TPC

- R&D status
 - Small prototype tests
 - Rich results obtained
 - Large prototype tests
 - Just started
- Future R&D plan
 - Advanced endcap
 - Surface mount electronics
 - Power pulsing
 - Mechanics (cooling, low material budget, etc.)
- Alignment
 - Laser system
 - Track based alignment at Z peak
 - ~10pb⁻¹ during the commissioning
 - ~1pb⁻¹ at machine transient (push-pull, etc.)
 - Continuous monitoring of temperature and pressure

ECAL

Sampling calorimeter with tungsten (W) absorber

Si or scintillator sampling layers with 5–10 mm lateral segmentation

An alternative option of Digital (MAPS) Si-W ECAL

- Si-W ECAL option:
 - 20 layers of 2.1mm (0.6 X_0) W + 9 layers of 4.2mm (1.2 X_0) W
 - 5x5mm² granularity of Si → 10⁸ cells in total
 - − Energy resolution ~ $16.6\%/E(GeV)^{1/2} \oplus 1.1\%$
- Si-Scintillator ECAL option:
 - 24 layers of 3mm W + 2mm scintillator + 2mm r.o.
 - 21 X_0 in total
 - 10x45mm² scintillator strips to reduce # of ch (~10⁷)
 - Wavelength shifter fiber and multi-pixel photon counter (MPPC) readout
 - Energy resolution ~ 14% %/E(GeV)^{1/2} ⊕2%

HCAL

- Sampling calorimeter with stainless steel (Fe) absorber
 - − 48 layers of 20mm Fe \rightarrow 5.7 λ_1
 - − ECAL+HCAL: 6.6λ₁
- Scintillator (analog HCAL) or gaseous device (digital HCAL) for active layers
- AHCAL option
 - 3x3cm² scintillator tile with 3mm thickness
 - Wave length shifting fiber + SiPM readout
 - Energy resolution~ 49.2%/E(GeV)^{1/2} ⊕ 2.3%
- DHCAL option
 - Glass resistive plate chamber (GRPC) with 1x1cm² readout pads
 - Semi-digital (2bits) readout

Calorimeter

R&D

- Horizontal collaboration: CALICE
- Wide variety of studies of options, sensors, electronics, mechanics, etc.

→ We can learn a lot of things

Si sensor prototype with 5x5mm² pad size

MPPC prototype

Forward Detectors

LumiCAL

- Si/W
- -32 74 mrad
- Luminosity measurement accuracy of < 10⁻³

BeamCAL

- -5 40 mrad
- Hit by e+e- pair-background caused by beambeam interaction
- Si, GaAs, or diamond W sandwich

Pair-monitor

- Placed in front of BeamCAL
- Measure beam shape from the distribution of Pair-background
- Si pixel detector (SOI?)

• LHCAL

- Locates after LumiCAL
- Si/W sandwich, $4\lambda_{\rm I}$

R&D

International collaboration : FCAL collaboration

Coil and return yoke

- Super-conducting solenoid
 - Nominal 3.5T, maximum 4T
 - Coil: R=3.8m, L=7.35m
 - Cryostat: 3.44m<R<4.34m
 - Stored energy ~ 2GJ @4T
- Return Yoke
 - Barrel
 - 4.6m<R<7.8m
 - 10cmx10layers+56cmx3layers
 - 4cm gaps for muon detector
 - Endcap
 - 4.0m<Z<6.6m
 - 10cmx10layers+56cmx2layers

- Non-uniformity: $\left| \int_{0}^{2.25m} (B_r/B_z) dz \right| \sim 7 \text{ mm}$
- Stray field : <50G at R=15m
- Magnetic force on endcap~18000t

Muon detector

- Muon det. For ILC
 - No need for the "Muon trigger"
 - Linking of muon det. track with inner tracker track is easy ->
 - Momentum measurement is done by inner trackers (VTX, Si, TPC) with high precision
 - Role of muon det. is "identification" of muons
- ILD muon system
 - 10 layers of 10cm Fe yoke + few layers of thick Fe yoke interleaved with muon detectors
 - Scintillator strip, resistive plate chambers (RPC), or plastic streamer tubes (PST) as the detector
 - Muon system as "tail catcher" of HCAL: still controversial

DAQ and computing

- Basic concept
 - DAQ strategy is determined by the beam structure of ILD
 - Dead time free pipeline of 1 train (1ms)
 - Trigger-less DAQ
 - Pipeline data is read out within train interval of 200ms
 - Event selection by software for data storage
- Estimated data volume ~ 340MB/train, but largely depends on background rate

Detector integration

- Mechanical concept
 - CMS style assembly
 - Three barrel rings
 - Two endcaps
 - Central barrel ring holds solenoid cryostat and sub-detectors
 - Assembled on surface and lowered to underground cavern by a huge gantry crane
 - QD0 and forward calorimeters are supported by the support tube and pillar from the floor
 - All detector segments and QD0 supports are put on a large platform which can move for push-pull operation (Details of push-pull issue will be discussed in the morning session on 19th)

Underground cavern

- ILD is discussing a new cavern design
 - Different shaft position from the RDR design
 - Tunnel connecting the shaft and the cavern gives space for detector assembly and maintenance in garage position

Detector opening

- At beam position
 - Limited opening space (QD0 support pillar cannot move)
 - Access space ~1m
 - Minor maintenance
- At garage position
 - Wide space for opening by moving QD0 support pillar
 - Sub-detectors in the barrel can be removed for major maintenance

Costing

- Cost estimation based on
 - Experience of LHC detector construction
 - ILD sub-detector prototypes
 - Quotes from manufacturer
- We did not take into account
 - Future escalation
 - Contingency
 - R&D cost
 - Maintenance and operation
 - Manpower for R&D
- Current cost evaluation
 - 407 MILCU for M&S
 - 130 MILCU for manpower
 - Total 530 +100/-50 MILCU

ILD group

- History
 - ILD group was formed in 2007
 - GLD and LDC groups merged into ILD
 - Baseline parameters were fixed in Sep.2008
- Group structure (for LOI)
 - Joint steering board (2x3 members)
 - Working groups (2 contacts for each)
 - Optimization
 - MDI/Integration
 - Software
 - Costing
 - Sub-detector contacts (1-2 contacts for each)
 - VTX/Si-trk/TPC/ECAL/HCAL/Mu-det/DAQ/Solenoid
 - Representatives for common task groups (1-2 reps for each)
 - LOI-rep./Physics/Det.-R&D/Soft/Eng.-tool/MDI
- LOI signatories
 - 695 people signed up
 - 32 countries
 - 148 institutions

ILD executive board

R&D plan

- Sub-detector R&D is done by "horizontal collaborations"
 - ECAL and HCAL: CALICE collaboration
 - TPC: LC-TPC collaboration
 - Si trackers: SiLC collaboration
 - VTX: Many collaborations (LCFI/MAPS/DEPFET/FPCCD/...)
 - Forward detectors: FCAL collaboration
- ILD R&D goal by 2012
 - All sub-detector options will continue R&D
 - The R&D should reach to a point where a rapid decision can be made between options when the project (ILC) is approved
- Big challenges of ILD detector R&D
 - Power pulsing
 - R&D for electronics enabling sufficient power reduction
 - Vibration test in a sufficiently strong B field
 - Further demonstration of PFA
 - Spectrometer (prototype TPC?) and calorimeter combined
 - Using high energy hadron beam

Conclusion

- GLD and LDC merged into ILD to make a single LOI for ILC experiment
- ILD is a large detector based on highly segmented calorimeters optimized for PFA and TPC-Si combined tracking system
- After intense effort of parameter optimization for physics, ILD made a baseline design for LOI with sub-detector options kept
- If R&Ds are successfully completed, ILD design has enough performance for ILC physics
- Sub-detector R&D for ILD is basically done by horizontal collaborations, LC-TPC, CALICE, SiLC, etc., and ILD group defined contact persons to the R&D groups
- ILD group structure is working efficiently while keeping flexibility and openness
- We believe ILD group is capable for completion of the technical design in TDP2, but lack of overall resources is a problem

Backup slides

Background

Pair background rate

Sub-detector	Units	Layer	Nom-500	Low-P-500	Nom-1000
VTX-DL	hits/cm ² /BX	1	3.2	7.1	7.1
		6	0.024	0.046	0.049
SIT	hits/cm ² /BX	1	0.017	0.031	0.032
		2	0.004	0.016	0.008
FTD	hits/cm ² /BX	1	0.013	0.031	0.019
		7	0.001	0.007	0.001
SET	hits/BX	1	5.64	57.5	13.0
TPC	hits/BX		408	3621	803
ECAL	hits/BX		155	1176	274
HCAL	hits/BX		8.4k	24k	20k