
Comments from JSF users

Katsumasa Ikematsu (KEK)
ILD Software Workshop (16/Apr/’09 @KEK)

1

Situation in Asia (mainly in Japan)
•ILC physics working subgroup activities

• Mixture of 20~30 experimentalists & theorists from Japan & China

• EWSB physics: ZHH@500GeV, TTH@500GeV, γγ-> HH / (H -> bb, WW*)

• New physics / cosmological connection: LHT w/ T-parity, Generic WIMP
studies, anomalous SM couplings etc. => lots of talks in the past & coming LC
workshops

• Basically, independent of ILD-LOI physics performance studies

• Fast detector simulator (JSFQuickSim)

• ROOT-based analysis libraries (LEDA - “Library Extension for Data Analysis”)

•JSF as a main study framework for the subgroup activities

• Needs to keep their momentum using “ILD software”

• Possible solution: Fast simulator implementation in the Marlin framework?

Katsumasa Ikematsu (KEK) / ILD SW Workshop
2

Situation in Asia (mainly in Japan)
•ILC physics working subgroup activities

Katsumasa Ikematsu (KEK) / ILD SW Workshop

PDF's For Printing Archive Search ILC Home Subscribe Contact 26 June 2008

ILC physics subgroup meeting at KEK
Today's issue features a story from Keisuku Fujii, a particle physicist, who is a member of the ILC group in KEK.

On May 31 we had a meeting of our ILC physics subgroup, which is a mixture of experimentalists and theorists working in
Japan. The meeting was the fifth in a series that started about a year ago, and each time 20 to 30 people got together to
monitor and discuss the direction of the subgroup’s activities. The primary task of the subgroup is to reexamine the ILC
physics in the context of the expected LHC results and to further strengthen the physics case for the ILC project.

The two main pillars of the standard
model.

We know that the standard model of elementary particle physics is based on
relativistic quantum field theory with two main pillars, the gauge symmetry and its
spontaneous breaking. The first pillar has been firmly established by the numerous
experiments in the past decades. The second pillar, the electroweak symmetry
breaking mechanism, is, however, left untested. At the centre of this symmetry
breaking lies the Higgs boson as predicted in the standard model. We believe it fills
our space-time and gives mass to every fundamental particle.

The current data indicate the existence of a Higgs particle below 160 GeV and we
hope that the LHC is going to find it. Once a Higgs-like particle is found, it is
extremely important to study it in detail and check if it really is the Higgs field (and
particle) that is responsible for symmetry breaking and mass generation. We need
to study the force that makes the Higgs boson condense in the vacuum and the
force that acts as the resistance to matter particles moving in the sea of the Higgs
field, thereby giving each of them a mass proportional to the strength of the force. The first most important mission of the
ILC is to study these forces so as to establish the second pillar of the standard model.

The ILC physics subgroup focuses its attention on this very important issue since it is a central motivation for the ILC and
is crucial whatever new physics is going to be found at the LHC. New physics beyond the standard model is the roof we
can put only after we establish both of the two main pillars of standard model. We need the ILC to carry out this mission.

-- Keisuke Fujii

© International Linear Collider

3

Full simulator & Fast simulator

•Use both drivability (its pros and cons) as the situation
demands
• ZHH team & TTH team intend to move to the FullSim framework (taking

advantage of the powerful mass production - 500GeV SM BGs + providing
additional signal StdHep files)

• New physics team & γγ team continue to use FastSim framework (taking
advantage of the light weight & non resource-consuming programs)

‣ e.g. γγ-> WW -> 4-jets (~90pb) BG against γγ-> HH (~0.5fb)

• If our resources allow we want to have both!
• Same interface preferable

• Should be easy to handle for both
Katsumasa Ikematsu (KEK) / ILD SW Workshop

4

Migration to the Marlin world?
•JSF is a framework for event-by-event data analysis

• Provides a framework for modular analyses suitable for “event generation -
det. simulation / testbeam data - analysis” chain

• Same as the Marlin world => expects no big interference (technically)

•But, JSF is based on ROOT

• Usefulness of the ROOT-CINT

‣ Unified framework for interactive and batch jobs => efficient .C macro
development environment

• Configuration file similar to .rootrc is used to set parameters

• User defined command line argument => input values can be overridden at
run time => useful for batch run

• Object I/O

‣ Data as branches of a ROOT tree can be saved/read in each modules

•Possible to realize similar culture in the Marlin world??
Katsumasa Ikematsu (KEK) / ILD SW Workshop

5

A fast det. simulator: JSFQuickSim
•Major member functions

Int_t GetNLTKCLTracks();

Int_t GetNCDCTracks();

Int_t GetNVTXHits();

Int_t GetNEMCHits();

Int_t GetNHDCHits();

Int_t GetNSMHits();

Int_t GetNGeneratorParticles();

TObjArray *GetLTKCLTracks(); // Pointers to LTKCLTracks objects array

TClonesArray *GetCDCTracks(); // Pointers to CDCTracks object array

TClonesArray *GetVTXHits(); // Pointers to VTXhits object array

TClonesArray *GetEMCHits(); // Pointers to EMhits object array

TClonesArray *GetHDCHits(); // Pointers to HDhits object array

TClonesArray *GetSMHits(); // Pointers to SMhits object array

TClonesArray *GetGeneratorParticles(); // Pointers to GeneratorParticle
objects array

Katsumasa Ikematsu (KEK) / ILD SW Workshop
6

e+e- -> ttH event display
•Dense 8-fermion (H->bb) & 10-fermion (H->WW*) events

•Challenging for correct reconstruction (jet-association)

Katsumasa Ikematsu (KEK) / LCWS08 @UIC

ttH -> (bW)(bW)(bb) -> (bud)(blν)(bb) ttH -> (bW)(bW)(bb) -> (bcs)(bcs)(bb)

Lepton + 6-jets mode 8-jets mode

7

Combined track: JSFLTKCLTrack
•End-user mainly uses track/CAL-cluster linked (= energy flow)
tracks only

•Major data members
Double_t fP[4]; // four momentum (E,Px,Py,Pz), GeV

JSFCDCTrack *fCDC; //! Address of corresponding CDC track.

Float_t fVTXNSig; // Sqrt((VTXDR/VTXDDR)^2 + (VTXDZ/VTXDDZ)^2)

Int_t fType; // ITYP

Katsumasa Ikematsu (KEK) / ILD SW Workshop

1: Pure gamma,
2: Gamma in mixed EMC,
3: Pure neutral Hadron,
4: Hadron in mixed HDC,
5: Pure charged hadron,
6: Unmatched track,
11: Electron candidate,
13: Muon candidate

8

LEDA: Library Extension for Data Analysis

•Useful classes featuring ROOT capabilities

• Kalman filter classes => details in Keisuke’s talk

• TAttLockable class adds lockable attribute to an object

• TAttDrawable class adds drawable attribute to an object

• ANL4DVector: lockable Lorentz vector class

• ANLPairCombiner: class library for pair combiners

• ANLEventShape: calculate Thrust, Oblateness, Major/Minor Axis

Katsumasa Ikematsu (KEK) / ILD SW Workshop

ANL2DSpline.h KalTrackDim.h TFFT.h TObjInt.h TVKalState.h
ANL2DVector.h TAttDrawable.h TH1E.h TObjNum.h TVKalSystem.h
ANL3DVector.h TAttElement.h THelicalTrack.h TPlane.h TVMeasLayer.h
ANL4DVector.h TAttLockable.h THype.h TStraightTrack.h TVSolid.h
ANLEventShape.h TCircle.h TKalDetCradle.h TTube.h TVSurface.h
ANLGaussFitter.h TCylinder.h TKalMatrix.h TVAddress.h TVTrack.h
ANLJetFinder.h TDim.h TKalTrack.h TVCurve.h TVTrackHit.h
ANLPairCombiner.h TDynArray2.h TKalTrackSite.h TVKalDetector.h
Anlib.h TDynArray3.h TKalTrackState.h TVKalSite.h

9

ttbar 6-jets pairing example
ANLJadeEJetFinder jclust(fYcut);

jclust.Initialize(tracks);

jclust.FindJets();

jclust.ForceNJets(xNjets);

TObjArray &jets = jclust.GetJets();

// Find W and top candidates in given mass windows.

TObjArray solutions(90);

solutions.SetOwner();

ANLPairCombiner w1candidates(jets,jets);

ANLPair *w1p, *w2p, *bbp;

while ((w1p = static_cast<ANLPair *>(w1candidates()))) {

 ANLPair &w1 = *w1p;

 Double_t w1mass = w1().GetMass();

 if (TMath::Abs(w1mass - kMassW) > xM2j) continue;

 w1.LockChildren();

 ANLPairCombiner w2candidates(w1candidates);

 while ((w2p = static_cast<ANLPair *>(w2candidates()))) {

 ANLPair &w2 = *w2p;

 if (w2.IsLocked()) continue;

 Double_t w2mass = w2().GetMass();

 if (TMath::Abs(w2mass - kMassW) > xM2j) continue;

 w2.LockChildren();

Katsumasa Ikematsu (KEK) / ILD SW Workshop

 ANLPairCombiner bbcandidates(w2candidates);

 bbcandidates.Reset();

 while ((bbp = static_cast<ANLPair *>(bbcandidates()))) {

 ANLPair &bb = *bbp;

 if (bb.IsLocked()) continue;

 for (Int_t i = 0; i < 2; i++) {

 ANL4DVector *b1p = static_cast<ANL4DVector *>(bb[i]);

 ANL4DVector *b2p = static_cast<ANL4DVector *>(bb[1-i]);

 ANLPair *bw1p = new ANLPair(b1p,w1p);

 ANLPair *bw2p = new ANLPair(b2p,w2p);

 ANLPair &bw1 = *bw1p;

 ANLPair &bw2 = *bw2p;

 Double_t t1mass = bw1().GetMass();

 Double_t t2mass = bw2().GetMass();

 if (TMath::Abs(t1mass - kMasst) > xM3j ||

 TMath::Abs(t2mass - kMasst) > xM3j) {

 delete bw1p;

 delete bw2p;

 continue;

 }

 Double_t chi2 = TMath::Power((w1mass - kMassW)/kSigmaMw,2.)

 + TMath::Power((w2mass - kMassW)/kSigmaMw,2.)

 + TMath::Power((t1mass - kMasst)/kSigmaMt,2.)

 + TMath::Power((t2mass - kMasst)/kSigmaMt,2.);

 solutions.Add(new ANLPair(bw1p,bw2p,chi2));

 }

 }

 w2.UnlockChildren();

 }

 w1.UnlockChildren();

}

10

ttbar -> 6jets reconstruction
I) Force 6-jets clustering

II) Confirm Max_cosθjet should be less than 0.99

III) Choose all the 15-possible pairs out of 6-jets =>
W1 candidate

IV) Choose all the 6-possible paris out of remaining
4-jets => W2 candidate

V) Remaining 2-jets should be b-jets: flavor tagging
(charm/bottom tagging) is very important to
eliminate both combinatorial and process BGs

VI) There are 2 possibilities to attach a b-jet to W1
and W2 candidates

VII) Store all solutions w/ χ2 = (mw1 - mw)2/σ2mw +
(mw2 - mw)2/σ2mw + (mt1 - mt)2/σ2mt + (mt2 - mt)2/
σ2mt

VIII) Sort solutions according to χ2: choose the best
solution

Force 6-jets

clustering

Katsumasa Ikematsu (KEK) / ILD Workshop at Seoul
11

M@RS
An ILD-DST analysis package

★M@RS = Modular Analysis with Root-based Subprograms

❖Aim

‣ provides a common framework for ILD-DST analysis (interface to LCIO) for JSF users

‣ same approach (= minimum user code modification) between Full simulator-Standard
reconstruction (MarlinReco/PandoraPFA/LCFIVertex) and Quick simulator analyses

➡make maximum use of the past resources!!

‣ use ROOT and OO features maximally = efficient reconstruction for complicated final
states (e.g. ttbar -> 6jets) using LEDA/Anlib; ANL4DVector (Lockable TLorentzVector),
ANLPair etc.

❖Dependencies

‣ ROOT, LEDA/Anlib and JSF-kern

❖Provides

‣ MarsPFObject: LCCollection *colPFOPtr = gLCEventPtr->getCollection("PandoraPFOs");

‣ MarsJet: LCCollection *colJetPtr = gLCEventPtr->getCollection("Durham_6Jets");

Katsumasa Ikematsu (KEK) / ILD SW Workshop
12

Summary
•In Asia (mainly in Japan), most of physics feasibility studies
and ILD physics benchmarking are done and on-going by
using JSF (with an ILD-DST interface or a fast detector
simulator, taking advantage of many ROOT features)

•Requests from JSF users

• Want to keep our momentum using “ILD software”

• Fast detector simulator in the Marlin framework

• Common analyses framework for both FullSim and FastSim data structure

• LEDA in the Marlin framework

Katsumasa Ikematsu (KEK) / ILD SW Workshop
13

