ILD and SiD Benchmark Analyses and the Next Steps...

Mark Thomson University of Cambridge

This talk:

ILD c.f. SiDPost-IDAG Priorities

• ILD c.f. SiD

Context:

- ★ Both SiD and ILD have produced some interesting bench-marking results
- **★** By comparing results, what can we learn about ILD ?

$e^+e^- \to HZ$: Higgs Recoil Mass

<u>SiD</u>

- Fix background in fit
- High stats. signal sample
- Template-based fit (bin-size dependency?)

<u>ILD</u>

- Float background in fit
- High stats. background sample
- Functional fit

Resolution driven mainly by generated (wrong) lumi. Spectrum
 Results probably consistent

- **★** ILD background large (includes Bhabha component)
- **★** ILD distribution is broader (e-tracking, treatment of Brems, material ?)
- ★ Other differences
 - template fitting: strong dependence of SiD fit result on bin size e.g. 200 MeV → 50 MeV: ~30 % (from memory) difference in mass resolution

Needs further investigation

Cross sec	tion Error diffe	Estimated	
	<u>SiD</u>	ILD	Only have changes for 100 % polarisation
$\mu^+\mu^- X$	±0.33 fb	±0.45 fb ——	→ ±0.32 fb
e^+e^-X	±0.46 fb	±0.74 fb	±0.45 fb
 Fix background in fit 		 Float background in fit 	 Fix background in fit

$e^+e^- \rightarrow HZ$ Higgs BR

Br(H→cc) ILD SiD

Channel		30
ZH→qqcc	30	6 %
ZH→vvqq	15	11 %
ZH→llqq	28	

★Tracked down "feature" in ILD qqcc analysis

- Problem with one cut: removes 75% signal and 80 % background
- Should have been caught but time pressure...
- **★**SiD analysis more sophisticated, e.g. ANN vs cuts

No indication of large difference in underlying flavour tag performance

- see next page

Channel

SiD c.f. "ILD" Flavour Tagging

500 GeV

Tau Pairs

Cross section:

Polarisation: ILD needs to add full set of channels

Top production

ILD has lower error: detector or better analysis ? In addition questions about robustness of SiD template fitting

Chargino/Neutralino

★ ILD errors much smaller – likely to be due to 40 % better jet energy resolution and hence WW/ZZ separation

TILC09, Tsukuba, 21/04/2009

Mark Thomson

Jet Energy Comparison

• SiD • 4th (Gaussian not rms₉₀ – but tails) (Different simulation)

•4th/ILD ~ 1.3 - 0.9

★ But errors on masses from SiD are very much smaller than ILD ! e.g. $m(\tilde{\chi}_1^0)$ 1 GeV vs 54 MeV

★ This is understood

- ILD extract masses from the positions of the kinematic edges
- SiD generate a sample with one of the gaugino masses shifted by 0.5 GeV and then perform a template fit (robustness?)
- SiD method effectively uses the cross section: we believe this isn't correct. The cross section can not be used to constrain the mass as it depends on other SUSY parameters

Post-IDAG Priorities

★The bad news...

- IDAG has requested that all concepts redo 250 GeV m_H analysis with new Monte Carlo samples !
- Reason: current results not valid !
- The problem:
 - samples generated with Guinea Pig luminosity spectrum with ISR switched on
 - ISR applied in this way does not know about cross sections
 - The applied again in generator
 - Affects signal badly
 - Also affects background double ISR likely to increase background
- The solution:
 - regenerate (all/main) 250 GeV files !
 - repeat recoil mass analysis !
- The impact:
 - mass production needs to start up again (sorry)
 - will have to concentrate on this: other samples very very very low priority

★ The opportunities...

chance to fix problems with this and other analyses

Lol+

Propose

- **★** Produce updated LoI physics section for IDAG meeting in Orsay
- ★ Have to do this for m_H
- ***** What else needs to be done ?
 - must try to understand e⁺e⁻X; this doesn't present ILD in the best light
 - tracking of electrons ? ()
 - including Bremsstrahlung photons
 - using track + ECAL for energy estimate ?

Other analysis

***I** believe it is also essential to update the following:

Higgs branching ratios

- no criticism of current analysis
- just that SiD were more sophisticated
- therefore get better performance
- not a feature of the detector
- Tau analysis
 - essential to optimise tau decay ID algorithms
 - produce P_{τ} results for all channels
 - this is important
 - statement during IDAG to SiD "... to take advantage of
 - your excellent tau ID capability"
 - must address this
- ttbar A_{FB}
 - IDAG request
 - This may be difficult, e.g. A. Moll left, necessary info in DST ?
 - In addition, physics motivation...
- Others
 - should consider improvements to all benchmark analyses...
 - where appropriate, make more consistent/comparable to SiD analyses

★ Timescales

- Final results to IDAG by 12th June
 - propose that we update physics section: final draft 5th June
 - this doesn't give us much time 6 weeks !
 - need to get organised very quickly, names, etc.
 - by the end of this week will try and contact all analysers to see what is feasible on this timescale

Other Priorities

- **★**Background, background, background
 - We need to make progress with background
 - at very least need to study vertex detector/flavour tagging
 - fold into recoil mass analysis
 - should give this very high priority

That's all for now...