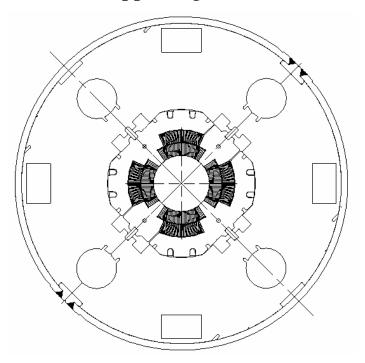

2 mrad IR magnets

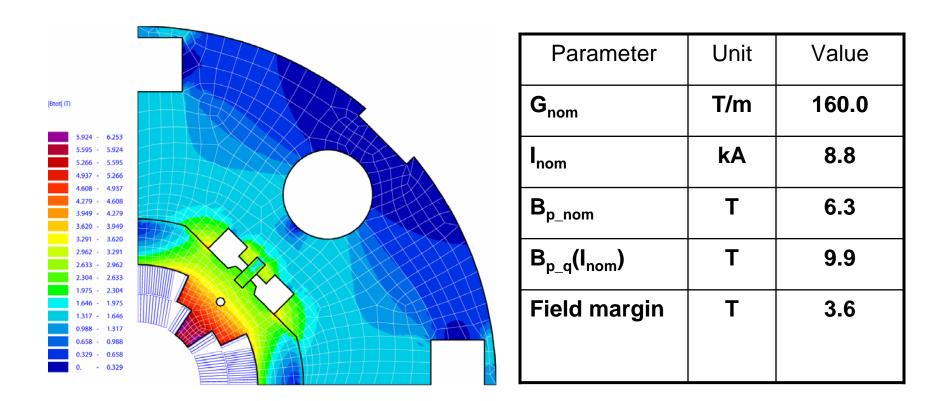
Magnet type	Bore radius, mm	Field at radius, T	Eff. length, m	Qty
Quad QD0	35	5.6	2.5	2
Sextupole SD0	88	4.0	3.8	2
Quad QF1	10	0.68	2.0	2
Sextupole SF1	112	2.12	3.8	2
SeptumQEX1A	113	1.33	3.0	2

Status of shared large-aperture magnets designs


Approach to RDR cost estimate:

- IR magnets designs are based on 1.9K NbTi technology developed for first-generation LHC IR
- *Preliminary* analysis (Vl. Kashikhin & A. Zlobin) indicates that LHC-IR type 70-mm NbTi quadrupole magnet (MQXB) are adequate to meet QD0 requirements
- Sextupole *preliminary* design (Vl. Kashikhin) is also derived from MQXB experience and parameters (strand/cable, mechanical support concept etc) and meets specs

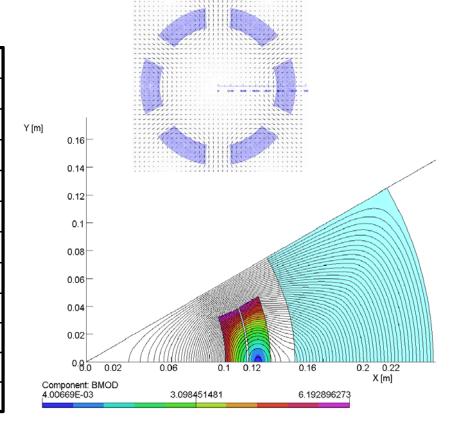
Reference Design: LHC IR Quad MQXB


Features/Parameters

- Aperture 70 mm
- NbTi @ 1.9K
- Self-supporting collar

Coil inner diameter	70 mm	
Magnetic length	5.5 m	
Operating temperature	1.9 K	
Nominal gradient	215 T/m	
Nominal current	11950 A	
Cold bore diameter OD/ID	66.5/62.9 mm	
Peak field in coil	7.7 T	
Quench field	9.2 T	
Stored energy	1360 kJ	
Inductance	19.1 mH	
Overal protection	Quench heaters,	
Quench protection	two independent circuits	
Cable width, cable 1/2	15.4/15.4 mm	
Mid-thickness, cable 1/2	1.456/1.146 mm	
Keystone angle, cable 1/2	1.079/0.707 deg.	
No of strands, cable 1/2	37/46	
Strand diameter, cable 1/2	0.808/0.650 mm	
Cu/SC Ratio, cable 1/2	1.3/1.8	
Filament diameter, cable 1/2	6/6 μm	
j _c , cable 1/2 (4.2 K and 5 T)	2750/2750 A/mm2	
Mass	5700 kg	

QD0 Design (Vl. Kashikhin)


There is 0.9 T field margin assuming 2.7 T detector's background field

Large aperture sextupole design (Vl. Kashikhin)

Shell type coil sextupole with cold iron

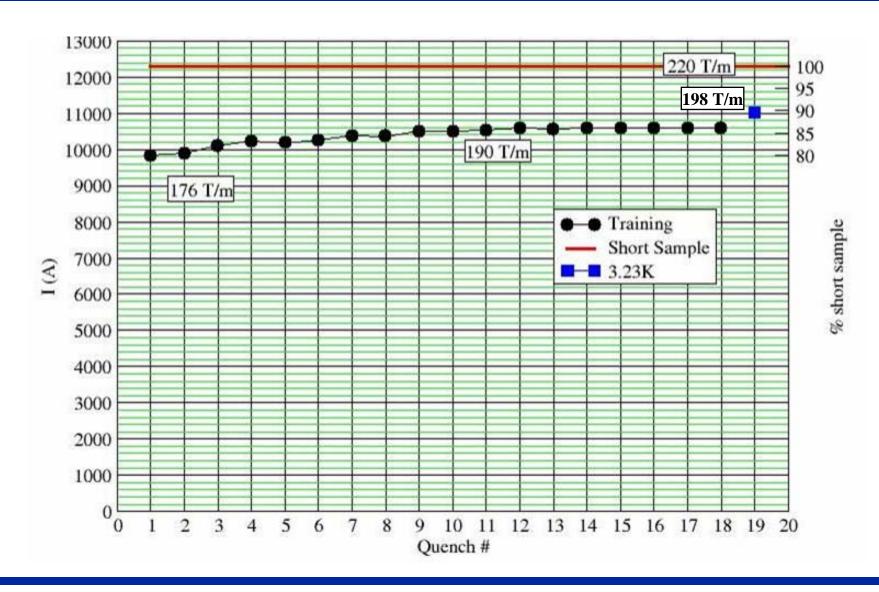
Design close to LHC IR Quadrupoles

Coil ampere-turns	343 kA	
Current	7 kA	
Calculated strength	519.2 T/m ²	
Coil maximum field	6.2 T	
Iron core field (max)	3.8 T	
Field energy	376 kJ/m	
Lorentz force, Fx	56.5 t/m	
Lorentz force, Fy	-83.2 t/m	
Number of turns	22(inner) + 27(outer)	
NbTi Superconducting cable	LHC IR inner	
Jc at B=5 T, 4.2	2750 A/mm ²	
Strand diameter	0.808 mm	

Open Issues for NbTi approach

- Required aperture has increased in later versions of the optics
- Additional bore space may be needed for corrector coils
- Peak coil fields will increase when detailed 3D effects, interaction with solenoid and anti-solenoid are considered
- ⇒ It appears that NbTi design margins are sufficient to take these effects into account, but it needs to be demonstrated
- More detailed calculations of magnetic center motion (SC magnetization, Lorentz forces, mechanics, iron saturation and hysteresis, etc)
- \Rightarrow present estimate is 1-5 µm magnetic center stability
- ⇒ need to develop correctors, optimize magnet movers for larger magnet weight/size

Alternative approach using Nb₃Sn


- LARP R&D status: first Technology Quad (TQ) achieved ~200 T/m in 90 mm aperture; second TQ ready for test; third TQ under fabrication
- After optimization, Technology Quads should provide up to 250 T/m
- LARP R&D Goal: 300 T/m in 90 mm aperture for High-Gradient Quad (HQ) by 2009

Potential for high gradient/large bore/short length; thermal margin Specify required aperture & gradient for SC quads, not "pole tip field" Typical gradients for Nb₃Sn should be 200-250 T/m in 90 mm bore (without taking into account solenoidal field)

Issues:

- Support structure designs for high-performance, brittle conductor presently require large transverse size
- Effect of persistent currents on magnetic center stability
- Uncertainties in performance limits and cost

TQS01 Quench Training

Summary

- Large bore 2 mrad IR superconducting magnets are feasible
- R&D and prototyping are needed to confirm the specified performance and cost estimation.

Next steps:

- <u>NbTi</u>: detailed 3D magnetic and mechanical analysis (including effect of anti-solenoid, corrector package, possibly larger aperture, liner)
- Nb₃Sn: develop coil and structure designs tailored to the specific needs of ILC: focus on magnetic center positioning and small transverse size, relax requirements on higher harmonics, design for required aperture and gradient, interaction with detector solenoid
- Discussions are underway to develop effective collaboration on IR magnet designs for 2 mrad and head-on schemes
- Need to perform self consistent calculations (backgrounds, heat loads)
- Installation & maintenance procedures (combined detector/magnets)