Summary of Calorimeter and Particle ID sessions

José Repond Argonne National Laboratory

LCWS, Vancouver, Canada, July 19 – 22, 2006

Two parts to my report...

1) (Personal) overview of where we stand

PFA, calorimetry, Muon systems...

2) Summary of progress reported at this workshop

Calorimetry Muon systems/Particle ID PFAs (see Norman Graf's talk later today)

Part I

Calorimeter/muon system overview

I) The ILC detector needs an unprecedented jet energy resolution

Previously $\sigma_{Jet} \sim 50\%/\sqrt{E_{Jet}}$ (GeV) has been achieved The aim is to be roughly a factor 2 better

This need is substantiated by a number of studies

e.g. TESLA TDR

. . . .

Triliniar Higgs coupling from $e^+e^- \rightarrow ZHH$ Separation of $e^+e^- \rightarrow \upsilon \upsilon WW$ and $\rightarrow \upsilon \upsilon ZZ$

Recently T. Barklow re-investigated $e^+e^- \rightarrow ZHH$ No benefit from $\sigma_{Jet} < 50\%/\sqrt{E_{Jet}(GeV)}$?

Absolutely need physics motivation for pushing for $\sigma_{jet} \sim 30\%/\sqrt{E_{jet}}$

II) The ILC calorimeter/muon system also needs to reconstruct/measure...

- photons with good energy resolution
- non-pointing photons (e.g. from the decay of long lived neutralinos)
- electrons (identification)
- muons
- taus (polarization), e.g. $\tau^+ \rightarrow \rho^+ \upsilon \rightarrow \pi^+ \pi^0 \upsilon$

Assuming we need it...

III) How do we go about achieving this fantastic σ_{Ejet} ?

There are two camps...

The believers

The heretics

IV) Facts about the believers in PFAs

- About 95% of the ILC detector community
- Basis of SiD, LDC and GLD detector concepts
- The believers claim that
 - PFAs work (true)
 - No existing detector has been designed with PFAs in mind (true)
 - $\sigma_{iet} \sim 30\% / \sqrt{E_{iet}}$ is achievable (maybe)

However, we need a proof that this is possible So far, we have mostly studied events at the Z⁰ pole Resolutions of $32 - 60 \% / \sqrt{E_{jet}}$ have been achieved (depending on what you do about the tails)

> Need to look at physics events which are relevant for the ILC

We don't need a detector optimized for Z^0 – pole events

- In any case hardware which is in line with PFA applications needs to be developed NOW
- Finely segmented calorimeters also good for non-pointing $\gamma,~\mu^{\pm}$, τ^{\pm} ,etc...

V) Facts about the heretics

- About 5% of the ILC detector community
- Basis of the 4th detector concept
- The heretics claim that

• PFAs need a good hadron energy resolution, since 'this resolution will determine how well one can determine the contribution of the precisely measured charged jet fragments to the *total* calorimeter signal and, therefore, the precision of the neutral energy obtained after subtracting this contribution' R.Wigmans, CALOR2002 (NO!)

- Overlaps will make the PFAs of limited use at higher energies (maybe)
- Optimizing the hadron energy resolution only way to improve σ_{iet} (maybe)
- Dual readout calorimetry is the way to improve σ_{Ejet} (maybe)

Measurement of em fraction of jets

Needs a demonstration of the method

- without using beam constraints in analysis
- which can be applied to a 4π detector

VI a) PFA ECAL Projects (worldwide)

Lead institutions	Active element	Absorber	Granularity	Status	Reported at VLCW06
Oregon/SLAC	Silicon	Tungsten	0.16cm ²	Wafers in hand, readout with 64 channels	yes
CALICE (Ecole Polytechnique)	Silicon	Tungsten	1.0 cm ²	Prototype in test beam	no
CALICE (Birmingham)	MAPS	Tungsten	50 x 50 μm²	R&D initiated	no
CALICE (Japan)	Scintillator	?	Effective	R&D initiated	yes
Colorado	Scintillator	Tungsten		R&D initiated	yes

VI b) PFA HCALs (worldwide)

Lead institutions	Active element	Absorber	Granularity	Status	Reported at VLCW06
CALICE (DESY)	Scintillator	Steel	3 x 3 cm ²	Prototype in test beam	no
CALICE (ANL)	RPCs	Steel	1 x 1 cm ²	Ready for prototype construction	yes
CALICE (UTA)	GEMs	Steel	1 x 1 m ²	R&D initiated	yes

VII) Dual – readout calorimeters

Lead institutions	Active element	Absorber	Granularity	Status	Reported at VLCW06
DREAM (Texas A&M)	Quarz/scin tillating fibers	Steel	?	First results from test beams	yes
Washington	Lead glass/scint illator	Lead glass (+ Heavy metal)	?	R&D initiated	no

Part II

Progress reported at VLCW06

Photodetectors for scintillator

Development of SiPMs has become a worldwide enterprise

Name	Company	Location	Status	Reported at VLCW06
SiPM (Silicon PhotoMultiplier)	MEPHI, Pulsar	Russia	O(5000) produced, extensively tested	no
MRS (Metal Resistor Silicon APD)	INR, Moscow	Russia	O(few 100), tested by several groups	no
MPPD (Mulit-pixel photon counters)	Hamamatsu	Japan	O(10), tests initiated	yes
SiPM	ITC-irst	Italy	O(100), tests initiated	yes
SiPM	Photonis	?	?	yes
GPD (Geiger-mode avalanche PhotoDiodes)	A-Peak	USA	O(few), test initiated	yes

Adapted from R. Wilson (Colorado State)

R&D at MEPHI (Moscow) together with PULSAR (Russian industry)

Comparison of Photodetectors				
	PMT	MPPC/SiPM		
Gain	~10 ⁶	10 ⁵ ~10 ⁶		
Photon Detection Eff.	0.1 ~ 0.2	0.1~ 0.4		
Response	fast	fast		
Photon counting	Yes	Great		
Bias voltage	~ 1000 V	30 ~ 70 V		
Size	Small	Compact		
B field	Sensitive	Insensitive		
Cost	Expensive	Low (\$1~10?)		
Dynamic range	Good	Determined by # of pixels		
Long-term Stability	Good	Unknown		
Robustness	decent	Unknown, maybe good		
Noise (fake signal by thermions)	Quiet	Noisy (order of MHz)		

S Uozumi (Tsukuba)

Selection of the Results Reported

Single photoelectron peaks in

different time bins

Signal charge at different Temperatures

G Pauletta (Udine)

R Wilson (Colorado State)

Saturation curve

Gain

18F

16 14

12 10

8Ē

6 4

2 4

6 8

Scans with laser (1 μ m spot size) \rightarrow Geometrical acceptance ~20% \rightarrow Variation within active area 7 – 13%

3.1

10 12 14 16 18 20

-3.5

 \rightarrow Gain variations inside active area 2 – 3%

S Uozumi (Tsukuba)

Tail – Catcher/Muon Tracker

Question I

- PFA calorimeters excellent at tracking MIPs
- High magnetic field means muons need $p_T \sim 3$ GeV/c to reach back of coil

Do we need a muon system?

C Milstene: Study of bbar-b events

- Study in context of SiD detector
- 10,000 events generated with GEANT4
- Polar angle cut to select events in barrel
- Transverse momentum > 3 GeV/c

Filter to remove hadrons

- Cut tracks with large energy deposits (above 2 hits/layer) Either in HCAL (first point) or in TCMT (other points)
- Cut tracks with voids in 2 3 consecutive layers
- Require 1 4 hits in the last 4 HCAL layers
- Require hits in the TCMT

Question II

- System will be located outside coil (approximately 1 λ_I)

Can a tail catcher improve σ_{Eiet} ?

in PFAs through improving $\sigma(h^0)$

Calorimeter only

- Improved resolution
- Energy dependence?

 \rightarrow Needs to be studied in the context of PFAs

Muon systems: Hardware R&D

Lead institutions	Active element	Readout	Status	Reported at VLCW06
FNAL	Scintillator	MAPMT	First results from test beams	yes
NICADD/NIU	Scintillator	Si-PM	First results from test beams	yes
Frascati	RPC		First results from test beams	yes
Wisconsin	RPC		R&D initiated	yes

M. Piccolo: 'Performance not critically dependent on the operational details of the active detector'

More important to use the same technology as the HCAL?

Hardware: Scintillator

Hardware: Resistive Plate Chambers