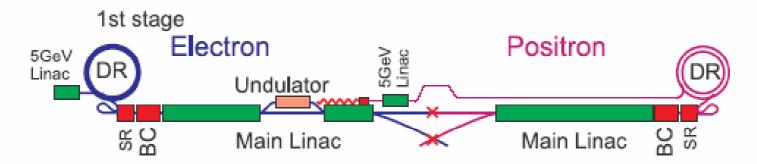
Issues for the LC-TPC design and their feedback to the R&D program

OUTLINE of TALK

Overview
LCTPC Design Issues in the DODs
Next steps:

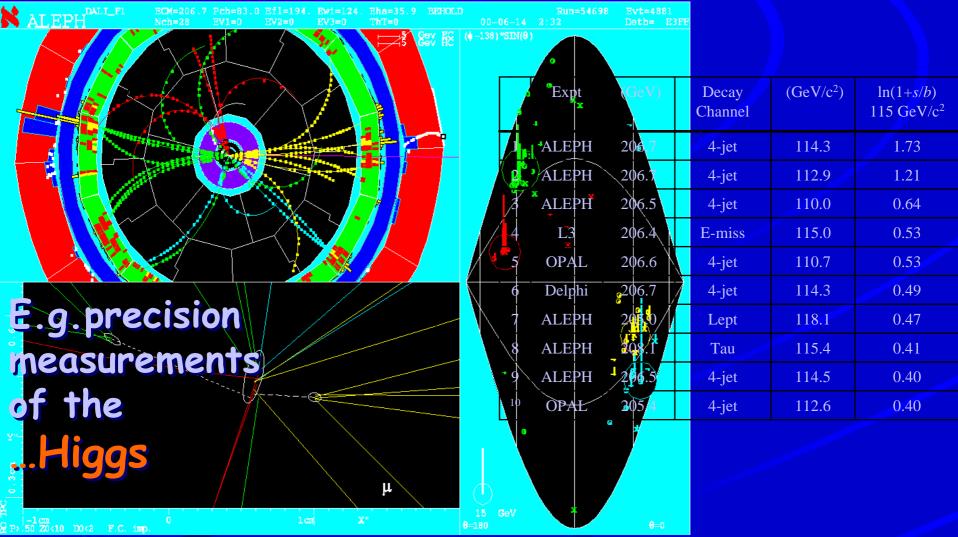

More work with Small Prototypes (SP)
Build the Large Prototype (LP)

LCTPC ⇒ R&D plans

International Linear Collider (ILC)

could look something like

Strawman BCD Layout

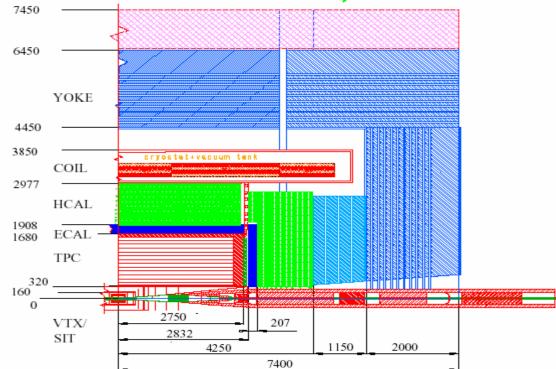

LDC/GLD/4th Concepts A TPC for a Linear Collider Detector

Vancouver WS July 2006 -- LCTPC Design Issues: R&D Planning

200

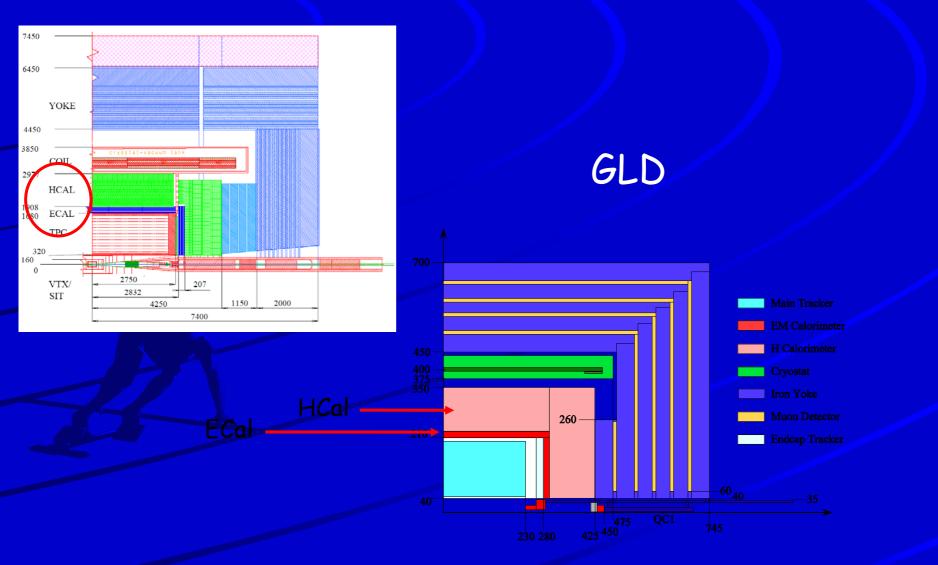
KC6

Goal: to build a high-performance TPC as central tracker for an ILC detector

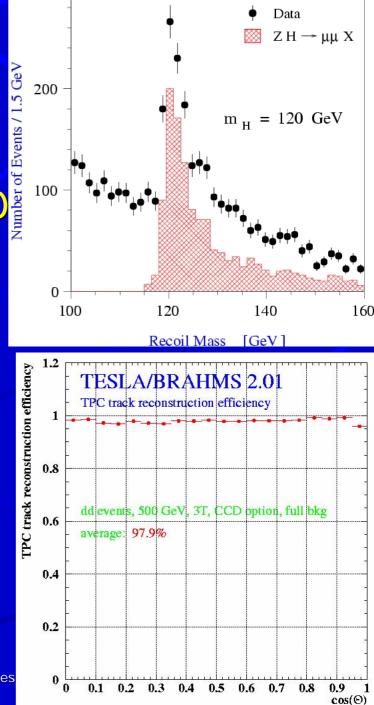

Large Detector Concept example

- Flavor tag $\delta(\mathrm{IP}) \sim 5\mu\mathrm{m} \oplus \frac{10\mu\mathrm{m} \mathrm{GeV/c}}{\mathrm{p}\sin^{3/2}\theta}$
- Track momentum $\delta(1)$
- Particle Flow

 $\delta(1/p_t) \sim 6 \times 10^{-5} \text{ GeV/c}^{-1}$ $\delta E/E \sim .30 / \sqrt{E}$


Energy flow – granularity – hermeticity – min. material inside calos – calos inside 4 T coil

(N.B. below are TDR dimensions, which have changed for latest LDC iteration)



20/07/2006

LDC

Physics determines detector design
* momentum: d(1/p) ~ 10⁻⁴/GeV(TPC only) ~ 0.6×10⁻⁴/GeV(w/vertex) (1/10×LEP)

e⁺e⁻→ZH→II X goal: $\delta M_{\mu\mu}$ <0.1x Γ_Z → δM_H dominated by beamstrahlung

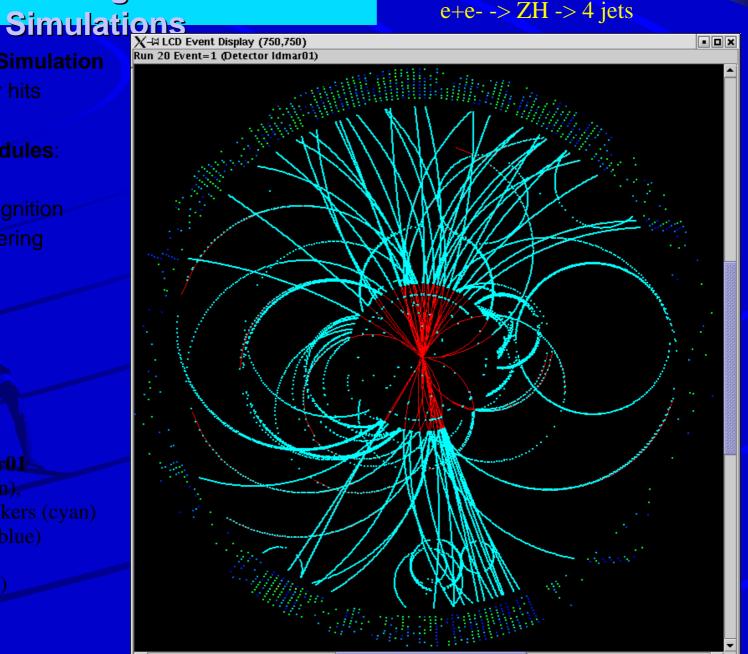
tracking efficiency: 98% (overall)

excellent and robust tracking efficiency by combining vertex detector and TPC, each with excellent tracking efficiency

American Large Detector

Geant4 Detector Simulation

Provides detector hits


LCD Analysis Modules: Hit smearing TPC Pattern recognition

Calorimeter clustering Event display

LCIO JAS histograms AIDA tuples

> Detector: ldmar01 Hits: TPC (cyan), Inner trackers (cyan) EM Cal (blue) Tracks (red) Clusters (green)

20/07/2006

Excerpts from DODs for GLD and LDC used here as examples

DESIGN ISSUES for the LCTPC

- Performance
- Endplate
- Electronics
- Chamber gas
- Fieldcage
 - Effect of non-uniform field
 - Calibration and alignment
 - Backgrounds and robustness

- Momentum precision needed for overall tracking?
- Momentum precision needed for the TPC?
- Good dE/dx resolution, V° detection
- Requirements for
 - 2-track resolution (in rφ and z)?
 - track-gamma separation (in r\u03c6 and z)?
- Tolerance on the maximum endplate thickness?
 - **Tracking configuration**
 - Calorimeter diameter
 - TPC
 - Other tracking detectors
- TPC OD/ID/length

LCTPC resolution in the DODs

subdetectors in reconstructing many of these channels are highly interconnected. For the TPC, the issues are performance, size, endplate, electronics, gas, alignment and robustness in backgrounds.

1.Resolution expected/needed

The requirements for a TPC at the ILC are summarized in Table 1.

Size	For GLD, $\psi = 4.1$ m, $L = 4.6$ m
Momentum resolution	$\delta(1/p_t) \sim 10^{-4}/\text{GeV/c}$ (TPC only; × 2/3 when IP included)
Solid angle coverage	Up to at least $\cos \theta \sim 0.98$
TPC material budget	$< 0.03X_0$ to outer fieldcage in r
	$< 0.30 X_0$ for readout endcaps in z
Number of pads	$> 10^6$ per endcap
Pad size/no.padrows	$\sim 1 \text{mm} \times 6 \text{mm} / > 200$
$\sigma_{\text{singlepoint}}$ in $r\phi$	$\sim 120 \mu m$ (average over driftlength)
$\sigma_{\text{singlepoint}}$ in rz	$\sim 0.5 \text{ mm}$
2-track resolution in $r\phi$	< 2 mm
2-track resolution in rz	< 5 mm
dE/dx resolution	< 4.5 %
Performance robustness	> 95% tracking efficiency (TPC only), > 98% overall tracking
Background robustness	Full precision/efficiency in backgrounds of 10-20% occupancy,
-	whereby simulations estimate $\sim 0.5\%$ for nominal backgrounds.

Table 1: Typical list of performance requirements for a TPC at the ILC detector.

The main question to answer is: what should the resolution be for the overall tracking? This will define how many silicon layers are needed. Present folkslore says that overall $\delta(1/p_t) \sim 5 \times 10^{-6}/\text{GeV/c}$ will be sufficient, as defined monophy by the e⁺e⁻ $\rightarrow HZ \rightarrow H\ell\ell$ channel used for measuring the Higgs production rate. This resolution is achievable with inner-silicon tracking and a TPC performance given in Table 1. If for physics reasons, the overall tracking accuracy should be better, a larger TPC and/or more silicon layers should

LC TPC Endcaps

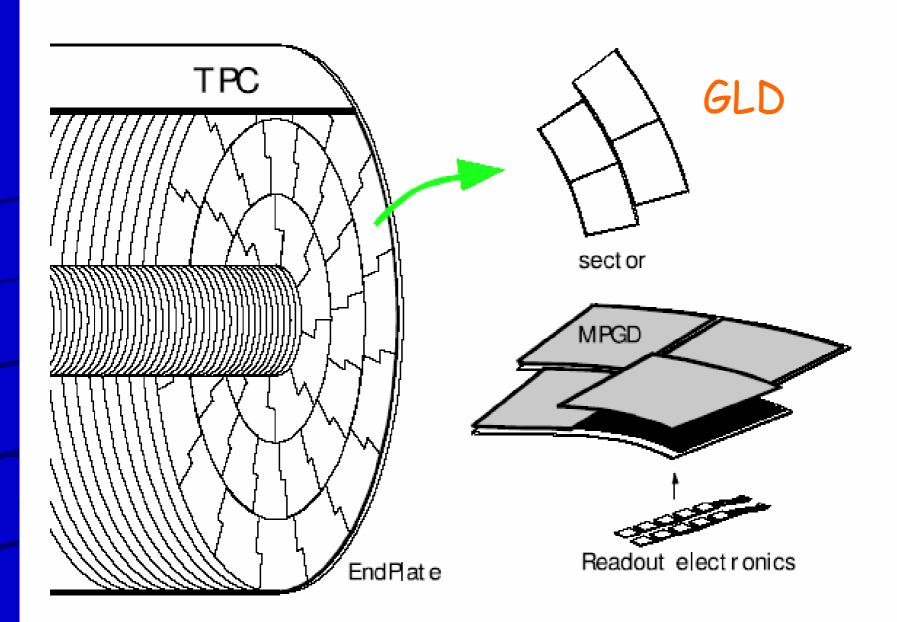
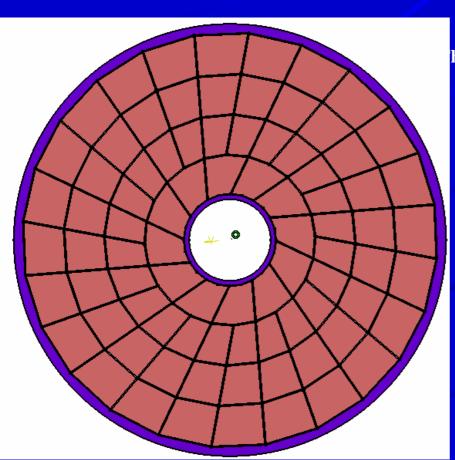

of the number of back-drifting ions. In addition a gating plane will be foreseen for inter-train gating in order to have a safety factor in case of unexpected backgrounds (see below). The two TPC endplates have a surface of about 10 m² of sensitive area each. The layout of the endplates, i.e. conceptual design, stiffness, division into sectors and dead space, has been started, for instance as shown in Fig. 1. In this example the question arises as to how

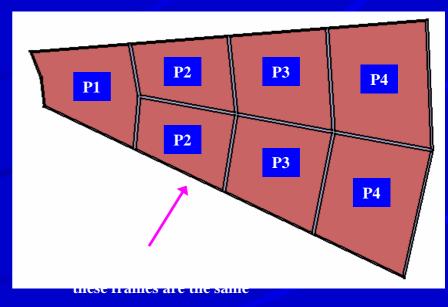
Figure 1: Ideas for the layout of the TPC endplates.

to make odd-shaped MPGDs if needed. In general, the readout pads, their size, geometry and connection to the electronics and the cooling of the electronics, are all highly correlated design tasks related to the endplates. As stated in Section 1.1, the material budget for the endcap and its effect on Ecal for the particle-flow measurement in the forward direction must be minimized. More details are especial in the next item.

3 Electronics



Arrangements of detectors on the active area of the end cap (2/2) Trapezoidal shapes assembled in iris shape


LDC

Annotations: *Px* is the type number of *PADS* boards or frames

12 sectors (30° each) as super modules are defined

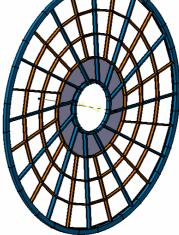
On each, 7 modules are fixed he sizes of detectors are varying from 180 to 420 mm

These arrangement seems to be the best as only 4 different PADS are necessary Ron Settles MPI-Munich/DESY Vancouver WS July 2006 -- LCTPC Design

Issues: R&D Planning

20/07/2006

15 **Page 2**


Principle for a Super Module equipped with detector 1

Deformation limit acceptability to define

Here is 20 µm / mbar of pressure

20/07/20

Carbon wheel

Complete wheel with 12 super modules

Design

- Gas-amplification technology \rightarrow input from R&D projects
- Chamber gas candidates: crucial decision!
 - Electronics design: LP WP
 - Zeroth-order "conventional-RO" design
 - Is there an optimum pad size for momentum, dE/dx resolution and electronics packaging?
 - Silicon RO: proof-of-principle
 - Endplate design LP WP
 - Mechanics
 - Minimize thickness
 - Cooling
- Field cage design LP WP

LC TPC Chamber gas (a) gas choice

ionizing track clusters. A modification of the Medipix2 chip (called Timepix) to measure also the drift time is under development[7]. Also a first working integrated grid has been produced[10].

• 4.Chamber gas

• This issue involves (a) gas choice, (b) ion buildup and (c) ion feedback.

(a) The choice of the gas for a TPC is an important and central parameter. Gases investigated are variations of standard TPC gases, e.g., Ar(93%)CH₄(5%)CO₂(2%)-"TDR" gas, Ar(95%)CH₄(5%)-"P5" gas,

Ar(90%),CH₄(10%)–"P10", Ar (90%)CO₂(10%), Ar (95%)Isobutane(5%) and Ar(97%)CF₄(3%)

When choosing a gas a number of requirements have to be taken into account. The $\sigma_{\text{singlepoint}}$ resolution achievable in $r\phi$ is dominated by the transverse diffusion, which should be as small as possible. Simultaneously a sufficient number of primary electrons should be created for the point and dE/dx measurements, and the drift velocity at a drift field of a few $\times 100$ V/cm should be about 5 cm/ μ s or more. The hydrogen component of hydrocarbons. which traditionally are used as quenchers in TPCs, have a high cross section for interaction with low energy background neutrons which will be crossing the TPC at the LC[1]. Thus the concentration of hydrogen in the quencher should be as low as possible, to minimize the number of background hits due to neutrons. An interesting alternative to the traditional gases. is a Ar-CF₄ mixture. These mixtures give drift velocities around $8 - 9 \text{ cm}/\mu s$ at drift field of 200 V/m, have no hydrocarbon content and have a reasonably low attachment coefficient at low electric fields. However at intermediate fields (\sim 5-10 kV/cm), as are present in the amplification region of a GEM or a MicroMegas the attachment increases drastically, thus limiting the use of this gas to systems where the intermediate field regions are of the order of a few microns. This is the case for MicroMegas, but its use has not been tested thoroughly for a GEM-based chamber. Whether CF4 is an appropriate quencher for the LC TPC is not yet known and is being tested as a part of our R&D.

(b) Ion build-up at the surface of the gas-amplification plane and in the drift volume.

LC TPC Chamber gas (b) Ion buildup

Known and is being fested as a part of our KND.

(b) Ion build-up at the surface of the gas-amplification plane and in the drift volume. —At the surface of the gas-amplification plane vis-a-vis the drift volume, during the bunch train of about 1 ms and 3000 bunch crossings, there will be few-mm thick layer of positive ions built up due to the incoming charge, subsequent gas amplification and ion backdrift. An important property of MPGDs is that they suppress naturally the backdrift of ions produced in the amplification stage. This layer of ions will be reach a density of some fC/cm³ depending on the background conditions during operation. Intuitively its effect on the coordinate measurement should be small since the drifting electrons incoming to the anode only experience this environment during the last few mm of drift. In any case, the TPC is planning to run with the lowest possible gas gain, meaning a few ×10³, in order to minimize this effect.

–In the drift volume, a positive ion density due to the primary ionization will be built up during about 1s (the time it takes for an ion to drift the full length of the TPC), will be higher near the cathode and will be of order fC/cm³ at nominal occupancy (~ 0.5%). The tolerance on the charge density will be established by our R&D programme, but a few × fC/cm³ is orders of magnitude below this limit.

LC TPC Chamber gas (c) ion backdrift/gating

(c) Ion backdrift and gating.

In order to minimize the impact of ion feeding back into the drift volume, a requiredsuppression of about 1/gasgain has been used as a rule-of-thumb, since then the total charge introduced into the drift volume is about the same as the charge produced in the primary romization. Not only have these levels of backdrift suppression not been achieved during our R&D programme, but also this rule-of-thumb is mislearling. Lower backdrift levels will be needed since these ions would drift as few-mm thick sheets through the sensitive region during subsequent bunch trains. Even if a suppression of 1/gasgain is achieved, the overall charge within the sheets will be the same as in the drift volume so that the density of charge within a sheet will be one to two orders of magnitude greater than the primary ionization in the total drift volume. How these sheets would affect the track reconstruction has to be simulated, but

to be on the safe side a backdrift level of << 1/gasgain will be desirable. Therefore, since the backdrift can be completely eliminated by a gating plane, a gate should be foreseen, to guarantee a stable and robust chamber operation. The added amount of material for a gating plane is small, $< 0.5\%X_0$ average thickness. The gate will be closed between bunch trains and remain open throughout one full train. This will obviate the need to make corrections to the data for such an "ion-sheets effect" which could be necessary without inter-train gating.

20/07/2006

LC TPC Electronics

Do HEILERDOU. FROME SECOND DEC COTOLOG HE ELC HONO POUL

3.<u>Electronics</u> For the readout electronics, one of the important issues is the density of pads that can be accomodated while guaranteeing a thin, coolable endplate. The options being studied are (a) a standard readout (meaning, as in previous TPCs) of several million pads or (b) a pixel readout of a few hundred times more by using CMOS techniques.
 (a) Standard readout:

Pad sizes under discussion are, for example, 2 mm times 6 mm (the TDR size[1]) or 1 mm times 6 mm which has found to be better as a result of our R&D experience (see below). A preliminary look at the FADC-type approach using 130 nm technology indicates that even smaller sizes like 1 mm times 1 mm might be feasible (in which case charge-spreading would not be needed). In all of these cases there are between 1.5 and 20 million pads to be read out. An alternative to the FADC-type is the TDC approach (see [6][7]) in which time of arrival and charge per pulse (via time over threshold) is measured. In case the material budget requires larger pads, then the resistive-foil technique[8] is an option to maintain the point resolution.

(b) CMOS readout:

A new concept for the combined gas amplification and readout is under development. In this concept[6] the MPGD is produced in wafer using post-processing technology on top of a CMOS pixel readout chip, thus forming a thin integrated device of an amplifying grid and a very high granularity endplate, with all necessary readout electronics incorporated. This concept offers the possibility of pad sizes small enough to observe individual single electrons formed in the gas and count the number of ionisation clusters per unit track length, instead of measuring the integrated charge collected. Initial tests using MicroMegas[9] and GEM foils[10] mounted on the Medipix2 chip provided 2-dimensional images of minimum ionizing track clusters. A modification of the Medipix2 chip (called Timepix) to measure also the drift time is under development[7]. Also a first working integrated grid has been produced[11].

LC TPC Fieldcage

5 The fieldcage

The design of the fieldcage involves the geometry of the potential rings, the resistor chains, the central HV-membrane, the gas container and a laser system. These have to be laid out for sustaining at least 100kV at the HV-membrane and a minimum of material. Important aspects for the gas system are purity, circulation, flow rate and overpressure. The final configuration depends on the gas mixture, which is discussed above, and the operating voltage which must also take into account the stability under operating conditions due to fluctuations in temperature and atmospheric pressure. For alignment purposes (see next two items) a laser system will be foreseen, either integrated in the fieldcage[11] or not[12].

Backgrounds/alignment/distortion-correction

- Revisit expected backgrounds
- Maximum positive-ion buildup tolerable?
- Maximum occupancy tolerable?
- Effect of positive-ion backdrift: gating plane
 - Tools for correcting inhomogeneous B-field or space charge effects in bad backgrounds?

LC TPC Non-uniform fields

6.<u>Effect of non-uniform field</u>

–Non-uniformity of the magnetic field of the solenoid will be by design within the tolerance of $\int_{\operatorname{Such}} \frac{B_r}{B_s} ds < 2 \mathrm{mm}$ used for previous TPCs. This homogeneity is achieved by corrector windings at the ends of the solenoid. At the ILC, larger gradients could arise from the fields of the DID (Detector Integrated Dipole) or anti-DID, which are options for handling the beams inside the detector in case a crossing-angle is chosen. This issue was studied intensively at the 2005 Snowmass workshop[13], where it was shown that the TPC performance will not be degraded if the B-field is mapped to 10^{-4} relative accuracy. The field-mapping gen and procedures should be able to accomplish this goal. The B-field should also be monitored since the DID or corrector windings may differ from the configurations mapped; for this purpose the option a matrix of Hallplates and NMR probles mounted on the outer surface of the fieldcage is being studied.

–Non-unformity of the electric field can arise from the fieldcage, backdrift ions and primary ions. For the first, the fieldcage design, the non-uniformities can be minimized using the experience gained in past TPCs. For the second, as explained above, the backdrift-ions can be minimized at the MPGD plane using low gasgain and eliminated entirely in the drift volume using gating. The effect due to the third, the primary ions, is due to backgrounds and is irreducible. As discussed above, the maximum allowable electrostatic charge density has to be established, but studies by the STAR experiment[15] indicate that up to 1 pC/cm³ can be tolerated, whereas at nominal occupancy ($\sim 0.5\%$) it will be of order fC/cm³. This will be revisited by the LC TPC collaboration by simulation and by the R&D programme below.

7.Calibration and alignment

LC TPC Backgrounds

8.Backgrounds and robustness

The issues have are the primary-ion charge buildup (discussed above) and the trackfinding efficiency in the presence of backgrounds, which will be discussed here. There are backgrounds from the accelerator, from cosmics or other sources and from physics events. The main source is the accelerator, which gives rise to gammas, neutrons and charged particles being deposited in the TPC at each bunch crossing[17]. Preliminary simulations of these under nominal conditions[1] indicate an occupancy of the TPC of less than about 0.5%. This level would be of no consequence for the LC TPC performance, but caution is in order here. The experience at LEP was that the backgrounds were much higher than expected at the beginning of the running (year 1990), but after the simulation programs were improved and the accelerator better understood, they were much reduced, even negligible at the end (year 2000). Since such simulations have to be tuned to the accelerator once it is commissioned, the backgrounds at the beginning could be much larger, so the the LC TPC should be prepared for much more occupancy, up to 10 or 20%. The TPC performance at these occupancy levels withhardly deteriorate due to its continuous, high 3D-granularity tracking which is still inherently simple, robust and very efficient with the remaining 80 to 90% of the chamber.

20/07/2006

LC TPC Calibration/alignment

below.

7.Calibration and alignment

The tools for solving this issue are Z peak running, the laser system, the B-field map, a matrix of Hallplates/NMR probes and the Si-layers outside the TPC. In general about 10/pb of data at the Z peak will be sufficient during commissioning to master this task, and typically 1/pb during the year may be needed depending on the backgound and energy of the ILC machine. A laser calibration system will be foreseen which can be used to understand both magnetic and electrostatic effects, while a matrix of Hallplates/NMR probes may supplement the B-field map. The z coordinates determined by the Si-layers inside the inner fieldcage of the TPC were used in Aleph[16] for drift velocity and alignment measurements, were found to be extremely effective and will thus be included in the LC TPC planning. The overall

tolerance is that systematics have to be corrected to 30μ m throughout the chamber volume in order to guarantee the TPC performance, and this level has already been demonstrated by the Aleph TPC[13].

8.Backgrounds and robustness

20/07/2006

R&D Planning

1) Demonstration phase

 Continue work with small prototypes on mapping out parameter space, understanding resolution, etc, to prove feasibility of an MPGD TPC. For CMOS-based pisel TPC ideas this will include proof-of-principle tests.

2) Consolidation phase

Build and operate the LP, large prototype, (Ø ≥ 75cm, drift ≥ 100cm), with EUDET infrastructure as basis, to test manufacturing techniques for MPGD endplates, fieldcage and electronics. LP design is starting → building and testing will take another ~ 3-4 years.

🗢 3) Design phase

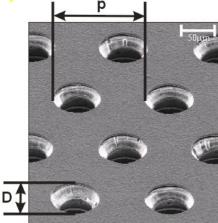
 After phase 2, the decision as to which endplate technology to use for the LC TPC would be taken and final design started.

LCTPC/LP Groups (18 July 06)

Americas Carleton Montreal Victoria Cornell Indiana LBNL MIT Purdue Yale Asia Tsinghua CDC: Hiroshima KEK Kinki U Saga Kogakuin Tokyo UA&T U Tokyo U Tsukuba Minadano SU-IIT

Other groups interested? More formal collaboration now being organized...

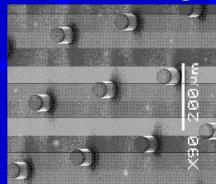
Europe LAL Orsay IPN Orsay Saclay Aachen Bonn DESY **U** Hamburg Freiburg Karlsruhe MPI-Munich Rostock Siegen NIKHEF UMM Krakow Bucharest Novosibirsk PNPI StPetersburg Lund CERN



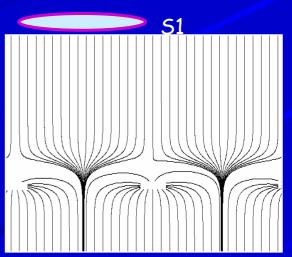
What have we been doing in Phase 1?

Gas-Amplification Systems: Wires & MPGDs→

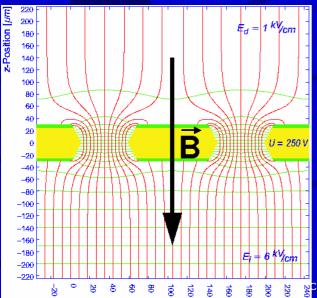
GEM: Two copper foils separated by kapton, multiplication takes <u>place in holes, uses</u> 2 or 3 stages



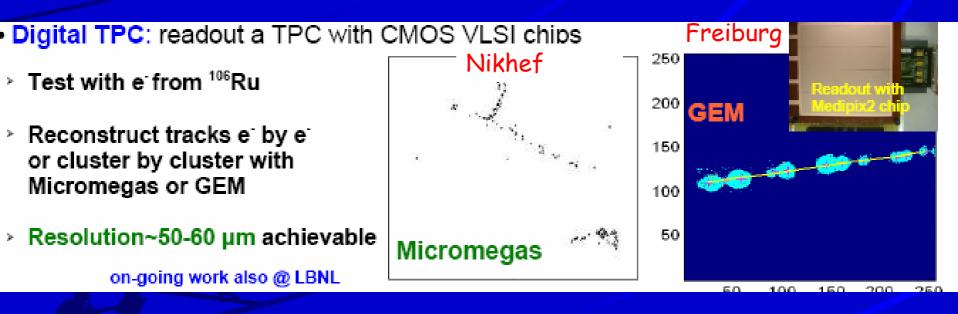
Р~140 µm D~60 µm


x-Position [um]

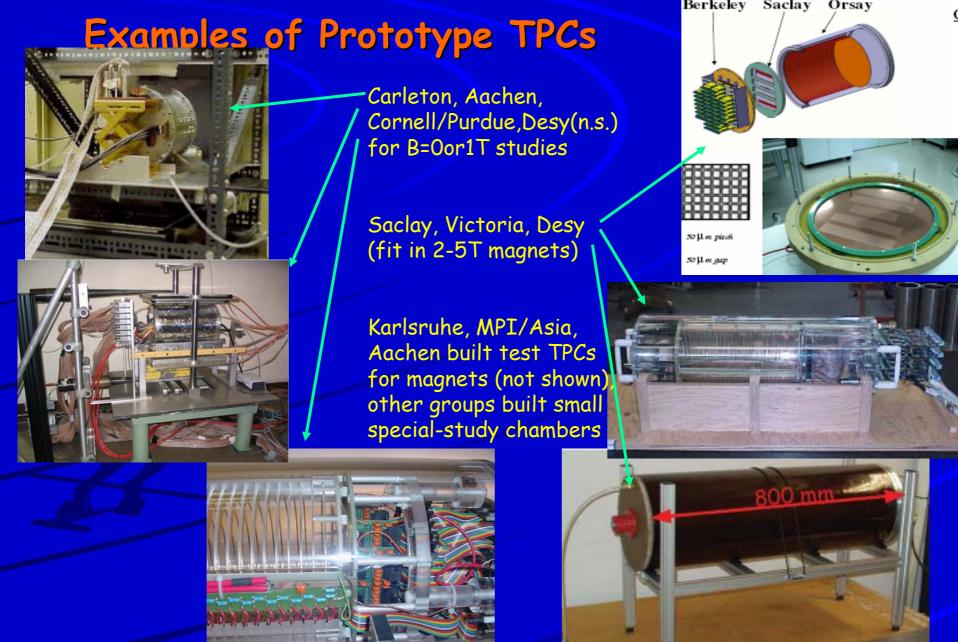
Micromegas: micromesh sustained by 50µm pillars, multiplication between anode and mesh, one stage



S1/S2 ~ Eamplif / Edrift



52



30

Pixel TPC Development

20/07/2006

Facilities

ANSALDO

Cern testbeam (not Test Beam Area 22

shown)

1-6 GeV Electron Beam Optional Target Three Layer Beam Telescope TPC (Position 2) 0.5 T Magnet TPC (Position 1)

TPC R&D summary to date

- Now 4 years of MPGD experience gathered
- Gas properties rather well understood
- Limit of resolution being understood
- Resistive foil charge-spreading demonstrated
- CMOS RO demonstrated
- Design work starting for the Large Prototype

Phase 2

• Basic Idea: LP should be a prototype for the LC TPC design and test as many of the issues as possible (like, e.g., TPC90 @ Aleph)

 The Eudet infrastructure gives us a starting basis for the LP work

 The general LC TPC R&D issues in addition to the LP R&D which will be planned in conjunction with it

20/07/2006

EUDET

Detector R&D for the International Linear Collider

Proposal full title	Detector R&D towards the International Linear Collider
Proposal acronym	EUDET

Schematical Overview	
Fundamental Objectives	
Networking Activities	
I. Overall Information	
II. Activity NA1 – Management of the I3	
III. Activity NA2 - Detector R&D Network DETNET	

This is for infrastructure for detector R&D, but not yet the R&D itself, to which allowerentiation of set the R&D groups will have to contribute if the list of the result of the successful set of the successful set of the successful set of the set of the successful set of the successful set of the successful set of the successful set of the set of the set of the successful set of the set of the successful set of the set of th

The idea was that this will provide a basis for the LC TPC groups to help get funding for the LP and other LC TPC work.

20/07/2006

Work Packages for the LCTPC/LP O) Workpackage: TPC R&D program

To be defined by the LCTPC collaboration

...e.g., Takeshi Matsuda et al discussing at bi-weekly meetings...

Goals of the Large TPC Prototype Study

The Goal: Demonstration of the full volume trucking with the best-at-present TPC candidate(s) for ILC, achieving the target resolution of LC TPC (in the non uniform magnetic field) "Thanks to all the efforts by EUDET"

In the course in the LP D&R:

Optimization of the endplate and sector design The structure of MPGD and pad (minimizing the dead regions at the sector/MPGD boundaries, in particular, in phi) Pad size and shape A gating structure

Most updated electronics Most updated field cage

Study/confirm the resolution and the two track separation in the large volume

Trucking in the non-uniform magnetic field Calibrations and corrections

Cooperation with other type of tracking detectors (such as the silicon and the pixel detector)

The important issue that we may not be able to access in the large TPC prototype study: Or can we? Endplate with surface-mounted front-end electronics Thermo-mechanical design and study

Work Packages for the LCTPC/LP

convener in white color

1) Workpackage MECHANICS Ron Settles

Groups expressing interest to date(others?)

a) LP design (incl. endplate structure) Cornell, Desy, IPNOrsay, MPI, +contribution from Eudet **Dan Peterson** b) Fieldcage, laser, gas Aachen, Desy, St.Petersburg, Ties Behnke +contribution from Eudet c) GEM panels for endplate Aachen, Carleton, Cornell, Desy/HH, Akira Sugiyama Karlsruhe, Kek/XCDC, Novosibirsk, Victoria d) Micromegas panels for endplate Paul Colas Carleton, Cornell, Kek/XCDC, Saclay/Orsay e) Pixel panels for endplate Ce Jan Timmermans Cern, Freiburg, Nikhef, Saclay, Kek/XCDC, +contribution from Eudet f) Resistive foil for endplate Carleton, Kek/XCDC, Saclay/Orsay Madhu Dixit

20/07/2006

Work Packages for the LCTPC/LP

2) Workpackage ELECTRONICS Leif Joennson

Groups expressing interest to date(others?)

a)"Standard" RO/DAQ for LP: Leif Joennson + ?

Aachen, Desy/HH, Cern, Lund, Rostock, Montreal, Tsinghua, +contribution from Eudet

b) CMOS RO electronics: Harry van der Graaf Freiburg, Cern, Nikhef, Saclay, +contribution from Eudet

c) Electr.,powerswitching,cooling for LC TPC: Luciano Musa Aachen, Desy/HH, Cern, Lund, Rostock, Montreal, St.Petersburg, Tsinghua, +contribution from Eudet

20/07/2006

Work Packages for the LCTPC/LP

3) Workpackage SOFTWARE Peter Wienemann <u>Groups expressing interest to date(others?)</u>

a) LP SW+simul./reconstr.framework: Peter Wienemann

b) TPC simulation, backgrounds Stefan Roth

c) Full detector simulation Keisuke Fujii Desy/HH,Cern,Freiburg, Carleton, Victoria, +contribution from Eudet

Aachen, Carleton, Cornell, Desy/HH, Kek/XCDC, St.Petersburg,Victoria

Desy/HH, Kek/XCDC, LBNL

20/07/2006

Work Packages for the LCTPC/LP 4) Workpackage CALIBRATION Dean Karlen <u>Groups expressing interest to date(others?)</u>

a) Fieldmap Lucie Linssen

b) Alignment Takeshi Matsuda
c) Distortion correction Dean Karlen
d) Rad.hardness of material Anatoliy Krivchitch
e) Gas/HV/Infrastructure Desy Postdoc Cern, +contribution from Eudet

Kek/XCDC

Victoria

St.Petersburg

Desy, Victoria, +contribution from Eudet

Here are some ideas for the evolution up to the Design Phase 3 (under discussion with the collab.)

• 2007-08: SP (small prototype) tests, LP1 -> two endplates: Gem+pixel, Microm.+pixel • 2009-10: LP2 -> real LCTPC prototype endplate: Gem or Mm + carbon-fibre sandwich, gating grid, sector/panel shape, LCTPC electronics, gas, etc

	TPC R&D breakdown ((prel.)	
• (Gem, Micromegas, Pixel	LP1@	Desy
•	Large, small, odd-shaped panels	LP1@	Desy
٩	Fieldcage	LP1@	Desy
•	Sandwich structure	SP/I	LP2
•	Gating/max. space charge	SP/	LP2
•	Point/2-track resolution	LP1@	Desy
•	Momentum meas. in inhomog. B-fie	eld LP1@	Desy
•	dE/dx measurement	LP1@	Desy
•	Gas studies	SF	
•	Pad shapes Sim	Simulation→LP1,LP2	
	Jet environment SP@	SP@Cern/FermiLab	
10	Beams		
	 1-6 GeV/c electrons 	LP1@	Desy
	 1-20 GeV/c hadrons (+dE/dx) 	LP2@Cern/	/FermiL
	 100 GeV hadrons (+jets) 	LP2@Cern/	FermiL
20/07/2006	Ron Settles MPI-Munich/DESY		

Vancouver WS July 2006 -- LCTPC Design Issues: R&D Planning 44

TPC milestones

2006-2010	Continue LCTPC R&D via small-prototypes		
	and LP tests		
2010	Decide on all parameters		
2011	Final design of the LCTPC		
2015	Four years construction		
2016	Commission/Install TPC in the LC Detector		

No conclusions... Backup slides...

LC-TPC Motivation/Goals

...to be tested@the LP where possible...

 continuous 3-D tracking, easy pattern recognition throughout large volume, well suited for large magnetic field

- ~98-99% tracking efficiency in presence of backgrounds
- time stamping to 2 ns together with inner silicon layer
- minimum of X_0 inside Ecal (<3% barrel, <30% endcaps)
- $\sigma_{pt} \sim 100 \mu m (r\phi)$ and $\sim 500 \mu m (rz)$ @ 30r4T for right gas if diffusion limited
- 2-track resolution <2mm (rφ) and <5-10mm (rz)
- dE/dx resolution <5% -> e/pi separation, for example
- easily maintainable if designed properly, in case of beam accidents, for example

• design for full precision/efficiency at 30 x estimated backgrounds Ron Settles MPI-Munich/DESY

Two other LC-TPC features \rightarrow will be compensated by good design... ~ 50 μs drift time integrates over 150 BX \rightarrow design for very large granularity: ~ 2 - 20 x 10⁹ voxels (two orders of magnitude more if CMOS pixel version) • ~ end caps with large density of electronics (several million pads) are a fair amount of material \rightarrow design for smallest amount: ~ 30%X₀ or less is feasible design for full precision/efficiency at 30 x estimated backgrounds

