## The ILC/LHC Physics Session

- Session speakers
- Highlights
- Observations/Summary

Jim Alexander,
David Rainwater,
Tim Tait and
William Trischuk
July 22, 2006

### **Speakers**

#### Wednesday afternoon

- The LHC Landscape (Georges Azuelos, Montreal)
- Z' Physics
   (Steve Godfrey, Carleton)
- Top couplings
   (Aurelio Juste, Fermilab)

#### Friday morning

- Strong EWSB
   (Tim Barklow, SLAC)
- SUSY with Heavy Sfermions (Gudrid Moortgat-Pick, CERN)
- Optimal  $E_T$  Observables (Bob McElrath, UC Davis)

### **LHC Prospects (Georges Azuelos)**

Gave an overview of ATLAS + CMS physics capabilities



# **SUSY Higgs at LHC/ILC**

- Large regions in  $m_0, m_{1/2}$  plane inconsistent with astronomical observations
- "Focus point" particularly amenable to ILC input



### Properties of Z' Bosons (Steve Godfrey)

- Z' sensitivities for ILC and LHC
- ILC better in many cases
  - Indirect searches are model dependent

- Solve coupling ambiguities?
- If electron couplings are known



### **Top Couplings (Aurelio Juste)**

- Top coupling is Order (1)
  - Explanation for Electroweak scale?
- 10-100k events per year at LHC
  - 15 % precision on top-Higgs coupling €
- 50-500 events per year at 10<sup>34</sup>
  - b-tagging keeps ILC in the game
  - 5-10 % precision possible

#### New $t\bar{t}H$ cross-sections at the ILC



### Strong Electroweak Symmetry Breaking (Tim Barklow)

- If heavy  $W^+W^-$  resonances are observed at LHC
- Can measure their form factors at ILC

$$F_T = 1 + s \sum a_i / M_i^2$$

- While LHC can observe on-shell resonances up to several TeV
- Amplitude form factors are sensitive to multi-TeV resonances ILC

 Form factors give information about spin of resonance observed



### **SUSY with Heavy Sfermions (Gudrid Moortgat-Pick)**

- In this scenario only neutralinos directly produced at ILC
- Decay product angular correlations sensitive to sfermion propagators
- $A_{FB}$  sensitive to  $\tilde{\nu}$  mass





- Constrain  $1900 \le m_{\widetilde{\nu}} \le 2100 \text{ GeV}$
- Should include theory systematics, but more observables will help

### Optimal Missing Energy Observables (Bob McElrath)

- Reviewed physics analysis from a statisticians perspective
- Statisticians solved "Missing Data" problem with E/M algorithms
- Form a likelihood:

$$L(\mathbf{Y}|\mathbf{X}, \mathbf{X}') = \prod_{i=1}^{N} P(\mathbf{x}_i, \mathbf{x}_i'|\mathbf{Y}).$$

- X: observables, X': missing observables, Y: parameters  $(M, \Gamma \text{ etc.})$
- Ratio of likelihoods for two hypotheses Y and  $Y^{(n-1)}$

$$= \frac{1}{N} \sum_{i,j=1}^{N} \frac{\int \log |P(x_i, x'|\mathbf{Y}) P(x_j, x'|\mathbf{Y}^{(n-1)}) dx'}{\int P(x_j, x'|\mathbf{Y}^{(n-1)}) dx'}$$

- Iterate and converge on right answer
- Challenge is to incorporate systematic uncertainties and backgrounds

## **Precision Electroweak Measurements at LHC and Beyond**

LHC and ILC will continue to improve SM Electroweak precision

|                                                 | now | Tev. Run IIA | Run IIB             | LHC   | LC      | GigaZ |
|-------------------------------------------------|-----|--------------|---------------------|-------|---------|-------|
| $\delta \sin^2 \theta_{	ext{eff}} (	imes 10^5)$ | 17  | 78           | 29                  | 14–20 | (6)     | 1.3   |
| $\delta M_W$ [MeV]                              | 34  | 27           | 16                  | 15    | 10      | 7     |
| $\delta m_t$ [GeV]                              | 5.1 | 2.7          | 1.4                 | 1.0   | 0.2-0.1 | 0.1   |
| $\delta m_h$ [MeV]                              | _   | _            | $\mathcal{O}(2000)$ | 200   | 50      | 50    |

- Some of the most difficult measurements to make
- Among the most un-reliable projections we can make

### **Precision at Hadron Colliders**

- Often hear:
  - " $e^+e^-$  machines are cleaner"
  - "Hadron colliders can't make precision msmts
- Historical perspective
  - LEP met "Yellow Book" expectations
  - Hadron collider often surpass goals
  - Data makes you smarter
- LHC-ILC interplay
  - Not a matter of competition
  - Better understand the complementarity!

• CDF-II  $\Delta m_t$  projection



## **Summary**

- Many examples of synergy between LHC and ILC measurements
- While the LHC will turn on first
  - Perhaps not as fast we had hoped
  - LHC physics menu can learn ILC physics case

Imitation is the sincerest form of flattery

- LHC discoveries will clarify questions for the ILC
- Sessions like this
  - Consider how ILC might be optimised, based on initial LHC results
  - Sharpen arguments for ILC in a post-LHC world
  - Consider ultimate, combined precision from both machines