The Multi-Pixel Photon Counter for the GLD Calorimeter Readout

Jul-20 2006 LCWS@Vancouver Satoru Uozumi University of Tsukuba, Japan

The GLD Calorimeter

- Sampling calorimeter with Pb/W scintillator sandwich structure with WLSF readout
- Particle Flow Algorithm (PFA) needs particle separation in the calorimeter
- Fine granularity with strip/tile scintillator
- Huge number of readout channels
 - ~10M (ECAL) + 4M (HCAL) !
 - 10k for muon detector
- Used inside 3 Tesla solenoid

Need new photon sensor which is compact and low-cost, but has enough performance.

EM-Scintillator-layer model

The MPPC performance

	PMT	MPPC	
Gain	~10 ⁶	10 ⁵ ~10 ⁶	
Photon Detection Eff.	0.1 ~ 0.2	0.1~ 0.4	
Response	fast	fast	
Photon counting	Yes	Great	
Bias voltage	~ 1000 V	30 ~ 70 V	
Size	Small	Compact	
B field	Sensitive	Insensitive	
Cost	Expensive	Low (\$1~10?)	
Dynamic range	Good	Determined by # of pixels	
Long-term Stability	Good	Unknown	
Robustness	decent	Unknown, maybe good	
Noise (fake signal by thermions)	Quiet	Noisy (order of MHz)	

The MPPC looks feasible for the GLD Calorimeter readout!

Required performance for the GLD Calorimeter

- Gain: ~ Best to have 10^6 , at least 10^5
- Dynamic range: can measure ~1000 p.e.
 - satisfactory to measure EM shower maximum
 - need > 2500 pixels
- Photon Detection Efficiency ~ 30 %
 - to distinguish MIP signal
- Noise rate : ~ 1 MHz (threshold = 0.5 p.e.,

threshold =1.5 p.e is also acceptable)

- good uniformity, small cross-talk
- Timing Resolution ~ 1 nsec
 - Necessary for bunch ID, slow neutron separation
- Sensor area: 1.5 x 1.5 mm
 - suitable for 1.5 mm ϕ fiber
- Should be stable against bias voltage / temperature / time

R&D Status @ GLD Calorimeter

- The MPPC performance looks feasible for the GLD calorimeter readout, but still not sufficient.
- Need study and improvement of the fundamental property to achieve our goal.
- Now we are measuring performance of latest 400 / 1600 pixel MPPC prototypes provided by Hamamatsu.
- Based on its results, we provide feedback to Hamamatsu to have improved sample.

Current Results of R&D with the 1600 pixel prototype

- Gain
- Noise Rate
- Microscopic Laser Test

Gain vs Bias Voltage

- Typical Gain ~ 5-12 x 10⁵ (400 pixels), 1.5-3 x 10⁵ (1600 pixels)
- Need precise control of bias voltage to have stable gain

Noise (Dark Counting) Rate (1600 pixels)

Count rate of dark noises above threshold (>0.5 / 1.5 photoelectrons)

Laser Bench Test of 1600 pixel MPPC

It is important to understand pixel-bypixel / inside-pixel variation of the performance.

Need of the pin-point light source The microscopic laser system launched at KEK in Mar 2006

- YAG Laser (λ = 532 μ m) with microscope
- Pulse width ~ 2 nsec
- Laser spot size ~ 1 μ m
- Moving stage pos. resolution ~ $0.02 \mu m$
- Can perform precise pinpoint scan with the well-focused laser

Results are yet preliminary !

• Variation within an active region ~ 7-13%

Scan within a pixel - Gain -

Center part have higher gain

• Gain Variation inside sensitive region ~ 2-3 %

Summary & Plans

- MPPC is a great device, and feasible for the GLD calorimeter readout.
- Extensive R&D is ongoing collaborating with the Hamamatsu Photonics.
- We still have lots of things to do in a short term:
 - Need more study of the fundamental properties (Photon Detection Efficiency, Linearity, etc)
 - Stability, Robustness, B-field tolerance
 - Time resolution
 - Device-by-device variation
 - More test with microscopic laser
- We may have next improved MPPC samples soon from HPK
- Current target is a beam test of EM calorimeter prototype with the full MPPC readout (next talk).
 ~500 MPPCs necessary, we will have them by the end of this year.

Backups

(*) Multi-pixels

	PMT*	MCP- PMT [*]	HPD*	APD*	MPPC (SiPM)
HV	1kV	1kV	8kV+300V	300V	50V
Gain	10 ⁶	10 ⁶	10 ⁵	10 ²	10 ⁶
Noize	<10Hz	<10Hz	??	Very Sensitive	1MHz
B Filed	NA	OK	OK	OK	OK
Price/chan nel	\$25	\$60		\$30	\$10
QE	15%	8%	8%	70%	10~20%
R&D	No	marginal	necessary	Marginal	necessary

β-ray test (in 2005)

- Practical test with Scintillator & WLSF
- Compare performance with PMT

MPPC performance is comparable with PMT for the practical use.