

Instrumentation Technical System Review

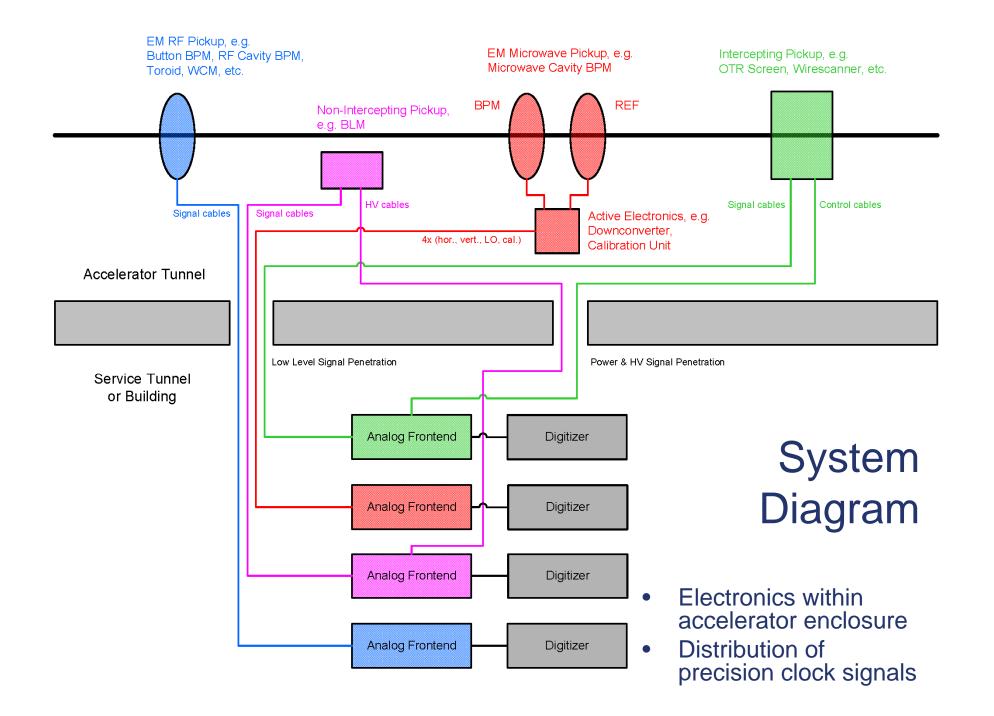
Marc Ross

Wednesday July 19 GDE Plenary **Global Design Effort**

1

Status: Engineering & Cost Estimate

- Instrumentation TS scope:
 - Beamline Instrumentation
 - Vacuum hardware flange to flange
 - Control/power hardware (e.g. laser, mover...)
 - cables
 - tunnel electronics (possible)
 - digitization electronics up to controls interface
 - Beam position monitors, profile monitors, loss monitors
 - Deflecting mode cavity ('LOLA' or crab) system <u>may be</u> <u>double counted in RTML</u>
 - This system uses modulator/klystron/distribution/cavity and has been estimated by respective TS



- missing a few 'special systems'

- e+ production photon diagnostics
- ring monitors (injection, tune...)

- (we also recommended additions)

- profile monitors
- loss monitor systems
- feedback loops
 - those loops using hardware not included in standard controls / instrumentation package
 - » links
 - » fast processors, digitizers, actuators
 - » pickups
 - » (DR coupled bunch feedback NOT included)

Project construction model similar to LLRF

- In-house design (possibly commercial)
- contract printed circuit assembly and test
- contract pre-termination of cables
- installation and test managed in-house

Cost Drivers – example roll up

RTML	. interface				14.6%
		4.1	Cavity BPM (C-Band)	beam (bunch) position	48.6%
		4.2	Cavity BPM (L-Band, cold)	beam (bunch) position	3.3%
		4.3	Laserwire	tr. beam size (emittance)	29.9%
aterial		4.4	OTR, OTRI	tr. beam size (emittance), beam energy	0.5%
		4.5	X sync light	tr. beam size (emittance)	2.6%
		4.6	DMC (LOLA)	bunch length, long. bunch tomography	12.6%
		4.7	Toroid	beam (bunch) current	0.2%
	ب	4.8	Pickup phase monitor	time-of-flight and bunch-to-RF phase	0.1%
	S	4.9	BLM - ion chamber	machine protection	0.3%
	0	4.10	BLM - PMT - discrete IC	machine protection	1.4%
	$\tilde{\mathbf{O}}$	4.11	Feedback - special	Feedback systems not otherwise covere	0.5%

RTML interface				
	4.1	Cavity BPM (C-Band)	beam (bunch) position	20.5 %
\frown	4.2	Cavity BPM (L-Band, cold)	beam (bunch) position	15.2%
L L	4.3	Laserwire	tr. beam size (emittance)	35.5%
	4.4	OTR, OTRI	tr. beam size (emittance), beam energy	5.6%
	4.5	X sync light	tr. beam size (emittance)	7.4%
	4.6	DMC (LOLA)	bunch length, long. bunch tomography	4.6%
	4.7	Toroid	beam (bunch) current	2.2%
	4.8	Pickup phase monitor	time-of-flight and bunch-to-RF phase	2.9%
	4.9	BLM - ion chamber	machine protection	0.4%
	4.10	BLM - PMT	machine protection	0.5%
	4.11	Feedback - special	Feedback systems not otherwise covere	5.3%

Wednesday July 19 GDE Plenary

ir iic

Global Design Effort

MS estimate by area:

		Cost %
1	Electron Source	2.9%
2	Positron Source, incl. keep alive source and transfer lines	23.6%
3	Damping Rings (1x e-, 2x e+)	26.8%
4	RTML interface	14.6%
5	Main Linacs	13.9%
6	Beam Delivery System	18.2%

 Note that ½ of the instrumentation MS cost is in the 'upstream part' of ILC

Button BPM	beam (bunch) position	S estimate 19.7%
Cavity BPM (warm)	beam (bunch) position by s	subsystem 13.5%
Cavity BPM (cold)	beam (bunch) position	9.2%
Pickup phase monitor	time-of-flight and bunch-to-RF phase	
Faraday cup	beam and dark current (gun region)	
Toroid	beam (bunch) current	
WCM Common Hardware	bunch length	0.0% 23.1%
Wirescanner Laserwire OTR, ORTI X sync light Streak camera DMC (LOLA) BLM - Long Ion chamber BLM - discrete ion chamber	tr. beam size (emittance) emittance and energy spread tr. beam size (emittance), beam tr. beam size (emittance) bunch length bunch length, long. bunch tomog machine protection machine protection	2.5% 0.6% 5.4% 0.7% 2.1%
Feedback - specials	all feedback hardware not incl in	nominal sys. 1.7%

- Beam position monitors
 - MS / Labor used recent FNAL system costs
- Laserwire subsystem
 - Laser
 - used costed systems, (a purchased item in our model)
 - (including 2006 bids for single laser systems)
 - scaling will be important but not large
 - total 20 lasers;
 - 3 completely different types
 - » injection systems
 - » ring
 - » damped beam
 - 20 to 30%?
 - IP (77 each)
 - costs taken from ongoing RD project efforts

We don't need \$ to begin checking the estimate:

- relative costs of key components provide critical information
- typical (PEP-II, SNS) project instrumentation costs are
 - 80% BPM's
 - 20% profile and beam loss monitors
- ILC Instrumentation RDR MS (Vancouver)
 - 65% BPM's
 - 20% Laserwires
 - 3% other profile monitors
 - 6% longitudinal
 - 3% loss monitors
 - Feedback, toroids etc
- difference driven by the cost of the laserwires in most regions

Button BPM example (level 3)

	M S	Total labor	Design	Prod
			77.4%	22.6%
Vacuum mechanics	34.1%	36.9%	32.2%	52.9%
RF feedthrough	1.1%	0.9%	1.1%	0.1%
Coaxial cable (1/2")	2.6%	3.0%	0.0%	13.2%
Analog frontend	22.7%	28.3%	32.2%	14.9%
Digitizer (<mark>4</mark> ch)	28.4%	30.9%	34.4%	19.0%

- Production labor covers:
 - inspection, calibration, test, installation and precommissioning
 - need to review cable installation costs for double counting and uniformity with controls etc

Usage	Item	each
all BPM's, phase pickups, Fcups	RF feedthrough	25919
everything, except DR BPM's and WCM	Coaxial cable (1/2")	14837
DR BPM's (alcove install.)	DR Coaxial cable (1)	11199
BPM's, toroids, not IC	Digitizer (4 ch)	6421.5

- Common hardware:
 - 50 m length / (DR 150 m) ½" cable slightly discounted
 - electronics discounted ~30%

Level of detail: BDS laserwire example

6.5	Laserwi	re	27.4%
6.5.1		Software	
6.5.2		Laser	24.3%
6.5.3		laser power	3.4%
6.5.4	~~~~	laser controls	2.7%
6.5.5	and	laser cables	0.1%
6.5.6	has: 's ar ers	laser room	2.5%
6.5.7	L S S S	laser cooling	0.3%
6.5.8		transport (500 ft seg)	16.9%
6.5.9	S II S	transport controls	1.7%
6.5.10		transport cables	0.8%
6.5.11	— М <u>М</u> 4	IP	33.8%
6.5.12		IP controller	13.5%
6.5.13		IP cables	0.7%
6.5.14		Detector	0.8%
6.5.15		detector controls	0.3%
6.5.16		detector cables	0.1%

Status – Level of detail and problems

– level of detail:

• Level 3 – major components

- what you know you have not dealt with

- Level 4 'cost driver' breakdowns
 - e.g. laserwire laser
- Special instruments
 - e.g. undulator photon diagnostics; MDI
 - damping ring
- BPM subsystems
 - calibration
 - detail cost of cleaning cold cavity BPM's
- Software labor costs
- Design labor apportionment for common hardware

- where are the weaknesses in your estimates

- Labor estimate in general
- Optics integration
 - where are the laserwires located?
 - do the feedback systems fit?
 - what is the optics for 'LOLA'
- what cost-critical information did you not receive
 - Physical layout
 - distances from support to beamline equipment
 - e.g. laser enclosure locations and LOLA source location
 - BPM scale issue in the linac
- what do you estimate is the impact of the above on your cost estimate
 - 20 to 30%?

Who / How

- BPM and related devices \rightarrow M. Wendt FNAL
- Laserwire → M. Ross and Oxford/RHUL group
- Feedback → Oxford U group
- Loss monitors \rightarrow SLAC group
- Other \rightarrow M. Ross
- Reviewed by Junji Urakawa, Grahame Blair and Philip Burrows, July 4, 2006 at Oxford.

Possibilities for Cost Reductions

- outline possible cost reductions by the Valencia workshop:
 - component-level cost reduction
 - Cavity BPM systems
 - propose using cavity HOM for primary cold linac BPM
 - design-level cost reduction
 - laserwire 'integration', i.e. planning where they will go and what they are supposed to do...

Plans and Goals

- goals for Vancouver:
 - review specifications and counts (esp. e+, DR and BDS)
 - checking...
- goals 'until' Valencia workshop
 - consistency, single counting
 - cables
 - controls
 - infrastructure

- Instrumentation design is supported by a relatively large RD effort
 - test facilities usage is key
 - goals of RD have been 'soft', i.e. educational
 - TDR work will involve a shift to hard, cost driven goals
 - laserwire
 - cavity BPM's
 - LOLA