

Dumps and Collimators Technical System Status

Tom Markiewicz/SLAC Vancouver GDE/ALCPG Meeting 19 July 2006 representing S. Ban and C. Densham with invaluable input from D. Walz & L. Keller

Status: Engineering

Parts list: ~Complete

ilc.

- Dumps (39)
- Fixed aperture collimation devices (95)
- Variable aperture collimation devices (115)
- MPS and PPS stoppers (28)

Requirements: More work needed

- Dumps
 - Peak power for nominal parameters
 - Duty Factors for short (seconds) and long (year) periods guesstimated

Collimators

- Power load estimated by area leaders or WGs
- High Lum parameters at 1 TeV used to determine technology choice
- Basic Device Technology assigned based on incident power, beam energy and particle type
 - 18MW-600kW: Pressurized water dump
 - 600kW-40kW: Metal balls in water bath
 - 40kW-25W Peripheral cooled solid metal
 - 25W 0W Un-cooled metal

Design & Interface Issues

Design parameters studied for 18MW dumps & guesstimated elsewhere

SLAC 2MW dump and two industrial studies done for TDR

- Examples of all other devices available at SLAC

Local and remote shielding requirements quesstimated based on beam power and long period duty factor

CF&S

- space specified for main dump enclosures
- space specified for underground rad-water pump/processing facilities for relevant device types
- LCW flow requirements based on rule of thumb (P, Δ T)
- No layout drawings made to understand constraints

Other TS

- incomplete list of devices requiring I&C
- incomplete list of supporting instrumentation (lon chambers)
- no serious conversation/plan (yet) for installation/replacement

Design Work Which Should be Done When Effort is Available

- Formal part breakdown structure for each device type
 - i.e. better definition of devices (real design)
- Regularize specifications when they exist
 - 18MW Dump specs from 3-5 May 2006 D&C Meeting @ SLAC
 - "Engineering" specs called out by area leaders
 - Who assigns the performance and engineering overheads?
- Make sure handshake with areas and other TS/GS exists and is accurate
- Layout drawings made to understand relationship of beamlines, devices and tunnels
- Separate out site dependent aspects of design
- Calculations (EGS/FLUKA/SHIELD11/ANSYS) to validate and refine current design assumptions
- Rudimentary CAD or better cartoons

Missing Information

- Basic design concepts for photon devices
 - Beamstrahlung dump for 2 mrad
 - Undulator photon dump
 - Undulator collimator
- Better understanding of variation of device requirements with beam parameter variation and management decision of engineering design point
 - currently assume "high lum" parameters and resultant beam loss
- Beam spot size at each device (other than final dump)
- Names of group responsible for "Supports and Movers"
 - ubiquitous throughout ILC; needed for adjustable collimators

Cost Methodology

First Unit Costs:

ilc

- 2003 industrial est. for 18MW water dump plumbing
- 1991 SLAC "bill" for sector 30 collimators
- Engineering estimates of D. Walz based on 40 years of actual construction/operation of similar devices

Economy of scale factor for each device type

- Learning curve not applied
- Minimum=60% for 72 H2O-cooled protection collimators

ED&I baseline set to 25% and adjusted upward for difficult one-off devices

- NOT estimated bottom's up

Best-Engineering estimates of Walz in 2006 \$

Cost-Dominant 18MW dump taken from 2003 German study & escalated

Average Unit costs distributed to areas on a per-item basis

Little effort made to verify that CF&S, I&C, Inst., Installation etc. costs for Dumps & Collimators have been captured

2006.07.17 Vancouver GDE

Global Design Effort

Two largest cost drivers have a basis of estimate Walz vs. Industrial 18MW estimate differ by 50% Most concerned that CF&S related costs will dominate total D&C related costs

- will be given attention asap
- Largest cost risks:
 - items falling through cracks
 - installation/replacement model
 - implications from technical risk of difficult devices we have not begun to consider
 - e.g. photon dumps

No real effort yet to estimate accurately ED&I, economies of scale or required site resources

Possibilities for Cost Reductions

Component-level cost reduction

- Studies of shielding requirements may reduce guessedat values
- Studies of maximum and average power on collimators may result in reclassification and savings
- RTML 660kW dumps borderline and assigned as 10atm H2O
 - can move to lower class if study shows it is safe or rate/charge, etc. lower power

Design-level cost reduction

- High Lum parameter set leads to many 250kW watercooled-ball collimators
- 2mrad has 250kW water-cooled-sphere adjustable collimators
- Full consideration of Himel list of reduced parameter operation

Plans and Goals

Plans and goals for this workshop

- Low expectations given the extreme parallelism of workshop and dearth of people working in the area
- Meeting with BDS planned during BDS parallel
- Meeting with I&C planned during D&C parallel
- Personally available to work/talk to anyone else during the Dumps & Collimator parallel session
- Plans for period between this and the Valencia workshop
 - To-Do list outlined earlier will easily saturate all resources
 - No devoted resources have been allocated to this task. It is being done on a best-efforts basis by people whose arms have been twisted.

TDR Report Phase

Experienced engineers to do bottoms-up design

- Manpower requested from US manager in current US FY'07 budget discussion
- R&D on dump window and other technologies
 - Personnel for studies & R&D explicitly requested in recent UK LCABD budget request

Bonus Slides Follow

2006.07.17 Vancouver GDE

Global Design Effort

12 of 11

Interfaces and Communications Recorded on Wiki

dr_ts:collin	nators_dumps			ILC WIK
it this page	Old revisions	Recent chang	es	Search
» collimators_	dumps			
ollimate	ors and Dum	ps	Table of Contents	
Charge		Edit	Collimators and Dump Charge Schedule People	os
Responsible protection (from �Ch	e for protection sp dumps, and beam co arges for RDR Leader	oilers, beam dumps, PPS and MPS limators. s (January 12, 2006))	; L	Edit
July 19-24 June 25 - 9 June 19 - N May 3-5 - 1	- Vancouver meeting Gunday - First Cost E Monday 1300 GMT - 1 Wed-Fri: Collimation	; next round of estimates due stimates Due to DCB (for Vancouver Mi 'ech System Status (w/ Installation) and Beam Dump Meeting at SLAC	eeting)	Edit
Group lead clicking I Group Men Juan Fer all of us by Area	ers are Shuichi Ba here. The official com hers also include nandez, Cuew Kelle clicking There.	n, ≝Chris Densham, and ≅Tom Marki tact person has not yet been specified ≅Rob Appleby, ≅Roger Bennett, ; ≝Micheal Schmitz, ≌Dieter Walz ar	iewicz. You can email al Wilhelm Bialowons, ஊEr d ⊡Nigel Watson. You	l of us by ric Doyle, can email
Elect Positi Damr	ron Source ⊒Axel Br ron Source ⊒John S iing Rings ⊒Mike Zis	achmann neppard nan		

Installation 💷 Fred Asiri

Technical System Contacts

Vacuum Systems IIIohn Noonan Accelerator Physics IIIoaniel Schulte and IIIKyoshi Kubo Instrumentation IIIMarc Ross Magnet systems contact not required Cryomodules & Cavities contact not required RF Power contact not required

Links to Areas & Systems

Electron Source Schematic showing Dump Locations Beam Power& Dump Requirements

Positron Source Positron Source RDR Web Page Beam Power& Dump Requirements(rev2;2006-06-08) Collimator & PPS Stoppers (rev3;2006-06-07)

RTML

BDS Tape Files and Excel Parts lists for the six beamlines of the BDS ILC 2006b BDS Beamline Layout

OPERATIONS Dumps and Shielding walls memo - T. Himel 17Mar06

Content Eat Himel List of Dumps Tuned for cost savings From 17Mar06 note 07June06 Memo Comprehensive List of Dumps and Collimators 2006-06-09 Version 2006-06-09 Version

http://www.linearcollider.org/wiki/doku.php ?id=rdr:rdr_ts:collimators_dumps

2006.07.17 Vancouver GDE

Edit

Edit

Global Design Effort

ILC Positron System Beamlines

ILC Keep Alive Source, Rev 0.

Global Design Effort

Assignment of Dump Type

.

. . .

.

Eng_Name		Locations	Technology	Enclosure (m^3)	RW/LCW (GPM for ΔT=30°C)	
Dump:Normal:Charged:500GeV:18MW Dump:TuneUp:Charged:500GeV:18MW	4 2	End of Dump Lines End of Linacs	10atm water dump 10atm water dump	21x11x18 ??	2286 2286	
Dump:TuneUp:Charged:150GeV:6.8MW	1	Before electron bypass to positron production chicane	10atm water dump	??	857	
Dump:Normal:Photon:500GeV:3.2MW Dump:TuneUp:Charged:15GeV:660kW	2 2	After 2 mrad IP After BC2 in RTML	10atm water dump 10atm water dump Special dump with very special	?? ??	405 86	
Dump:Normal:Photon:40MeV:300kW	1	After positron production targets	window: Low 2 absorber with lots and lots of water; treat as water cooled aluminum ball dump from point of view of shielding and pumps	??	36	
Dump:TuneUp:Charged:5GeV:225kW	2	Pre-DR tuneup dumps	Water cooled aluminum balls	??	29	
Dump:TuneUP:Charged:400MeV:45kW	1	After NC positron acceleration to 400 MeV and before injection into positron transfer line and acceleration to 5 GeV	Solid aluminimum block with peripheral cooling	??	6	
Dump:TuneUp:Charged:5GeV:22kW	2	After BC1 in RTML	Solid copper block with peripheral cooling	??	3	
Dump:Normal:Charged:114MeV:13kW	2	After the positron production targets	Solid aluminimum block with peripheral cooling	??	2	
Dump:TuneUP:Charged:400MeV:9kW	1	After NC positron acceleration to 400 MeV in low intensity KAS and before injection into positron transfer line and acceleration to 5 GeV	Solid aluminimum block with peripheral cooling	??	1	
Dump:TuneUp:Charged:100MeV:9kW	3	After NC L-Band structures for each of 3 electron gun line	Solid aluminimum block with peripheral cooling	??	1	
Insertable_TuneUP_Stopper:500GeV:8kW	4	In front of each IP	Insertable W-Cu-W sandwich	??	1	
Dump:Backup:Charged:114MeV:3kW	1	After the keep-alive-source positron production target	Solid aluminimum block with peripheral cooling	??	0	
Insertable_TuneUP_Stopper:5GeV:1kW	2	Between DR and RTML, in DRX; same as Himel called out (at higher power) for DR tuning running while downstream access/repair is permitted	Insertable Solid copper block with peripheral cooling	??	0	
Dump:TuneUp:Charged:12MeV:1kW	3	After each electron sub-harmonic buncher	Solid copper block with	??	0	
Dump:TuneUp:Charged:120keV:10W	3	After each electron gun	Faraday cup	??	0	
Dump:Abort:Charged:5GeV:45kJ Dump:Abort:Charged:250GeV:2.3MJ		At each of the damping rings Uniformly spaced along each lincac	Uncooled Al, Cu or Fe block Uncooled Al, Cu or Fe block		• 0 • • • •	
2006.07.17 Vancouver GDE Global Design Effort					of 11	

. .

Rad Water & Shielding Requirements for each Type of Dump

Technology	Total	RW Pump House (m^3)	LS(Fe) (cm)	LS(B- con)) (cm)	RS(Con) (cm)
10atm water dump	11	15x12x4	50	150	200
Special dump with very special window: Low Z absorber with lots and lots of water; treat as water cooled aluminum ball dump from point of view of shielding and pumps	1	15x12x4	50	150	200
Water cooled aluminum balls	2	15x12x4	10	40	200
Solid aluminimum block with peripheral cooling	8	No	10	40	200
Solid copper block with peripheral cooling	5	No	10	40	0
Insertable W-Cu-W sandwich peripherally cooled	4	No	10	40	0
Insertable Solid copper block with peripheral cooling	2	No	10	40	0
Faraday cup	3	No	0	0	0
Uncooled AI, Cu or Fe block	43	No	?	?	?
Grand Total	79				

10 bar H2O Dump

- R=30cm where beam hits water flow
- Velocity(water) = 1-1.5 m/s
- Pressure water 10 atm so that T(boiling) ~ 180 °C
- Diameter vessel ~ 1.5m

- Length water ~ 6.5m (18 X_0)
- ~ 1m high Z to absorb remainder of shower after water section
- 30cm diameter 1mm thick Cu window
 2006.07.17 Vancouver GDE
 Global Design Effort

2-96 8047A132 10 bar H2O Dump Plumbing

2006.07.17 Vancouver GDE

Plumbing near 10bar H2O dumps

6" Supply/Return with ~2200gpm

Global Design Effort

те	и те	2 10 otm water vegeel	TS1	TS2	Rad Water Loop
	1 13		D&C		Rad Water Feed/Return
		Water Vessel	D&C		Pump
D&C		vvater vessel support	D&C		HX
D&C		Vessel Window	D&C		Surge Tank
D&C	1&C	Window Replacement Robot	D&C		Polishing Loop
			D&C		H2 recombiner
TOA	TOO			1&C	Remotely operated valves
121	152				Flow meter
		Dump Housing		180	
	CF	Dump Housing Lights & AC Power		180	Pressure dauge
	CF	Fe Shielding		L&C	Pump controller
	CF	Near-Concrete sheilding	Dac	IQC	Fullip controller
	CF	Far-Concrete sheilding			
TS1	TS2	Pump Housing			
	CF	Rad Water/LCW Pump Housing	TS1	TS2	LCW Loop
	CF	Pump power	D&C		Pump
			D&C		HX
			D&C	I&C	Remotely operated valves
TOA	TOO	Cump Cuptom	D&C	1&C	Flow meter
151	152	Sump System		I&C	Temp gauge
B 2 2		Sump Housing W/ Stainless Steel Lining		1&C	Pressure gauge
D&C	I&C	Float & microswitches for sump pump		120	Pump controller
	CF	Stainless coated inclined ramp	Dao	100	

D&C I&C Radiation Sensor

D&C D&C

D&C

D&C

Sump pump transfer line to holding tank in pump room

Pushing (centrifugal pump) from sump holding tank in pum

Sucking pump from sump to holding tank

1 surface container for rad water

More Dump Cartoons

50cm Diameter x 2m long Aluminum Ball Dump with Local Shielding

50cm Diameter x 50cm long Peripherally-cooled Solid Cu or Aluminium Dump (before local shielding added)

LCW

2006.07.17 Vancouver GDE

Global Design Effort

26 of 11

2006.07.17 Vancouver GDE

Global Design Effort

27 of 11