# Indirect detection of dark matter



# Indirect detection – a complementary way to observe dark matter signals!

| DM Experiment<br>Class    | Dark matter source location             | Dark matter interaction |
|---------------------------|-----------------------------------------|-------------------------|
| Direct Detection          | Earth's Surface                         | WIMP-nucleus scattering |
| Particle Beam<br>Collider | Irrelevant                              | WIMP pair production    |
| Indirect<br>Detection     | Earth, Sun,<br>Galaxy,<br>extragalactic | WIMP pair annihilation  |

# Particles used for indirect detection of dark matter

WIMP pair annihilation hadronic final states





# Particles used for indirect detection of dark matter

WIMP pair annihilation leptonic final states





Particle yields & spectra



## Spectral lines

- For γγ lines, energy = WIMP mass; branching fraction is suppressed
- e+e-, vv lines are possible at tree level (especially for Dirac fermion or boson WIMPs)
- For WIMP masses >  $M_Z$  /2 can also have  $\gamma Z^0$  line
- Measurement of line branching fractions would constrain particle theory





#### **Annihilation flux**

```
\int (\sum_i dN/dE B_i)dE
4\pi \int \rho^2(\mathbf{r}) \mathbf{r}^2 d\mathbf{r} / \mathbf{M}^2_{\text{WIMP}}
               <\sigma v>/2
                 1/4\pi d^2
```

```
spectrum
       (particle physics)
                X
        number density<sup>2</sup>
         (astrophysics)
                X
      ann. cross-section
(cosmology, particle physics)
                X
           distance<sup>-2</sup>
```

# Where should we look for indirect signals?

- ♦ Galactic satellites
- ♦ Galactic halo
- ♦ Extra-galactic
- ♦ Galactic center
- Stars



## **Current experiments**

#### **Gamma ray detectors**

- Space (20MeV-300GeV)
  - > GLAST
- Ground (>100GeV)
  - > VERITAS
  - > HESS
  - > MAGIC

#### **Neutrino detectors**

- Underground (>5MeV)
  - > Super-Kamiokande
- Undersea / ice (>5GeV)
  - > AMANDA/ ICECUBE
  - > ANTARES

#### **Anti-Matter detectors**

- Space
  - **PAMELA**
  - > AMS



### **Gamma Ray Detectors**









July 21, 2006 - VLCW06 Cosmology Session

### Diffuse gamma ray background



### **Example A. dark matter satellite**



Dark matter source spectrum



Larry Wai / SLAC

# How many observable dark matter sources?



Simulation of Milky Way dark matter satellites from Taylor & Babul (2004,2005)

SUSY model definitions from Baltz, et.al. (2006); LCC2 and LCC4 are favorable to GLAST compared to LCC1 and LCC3.

July 21, 2006 - VLCW06 Cosmology Session

Larry Wai / SLAC

# Example: GLAST-IACT search strategy

- Assume GLAST finds some high latitude dark matter point sources consistent with WIMP mass ~100GeV
- Assume IACTs learn how to eliminate all of the charged particle background <150 GeV while retaining 20% gamma efficiency
- ➤ Example: 10-sigma high latitude GLAST WIMP source (5-yr exposure) would have ~100 counts background (0.5-deg radius circle, E>1GeV), ~100 counts signal; follow-up by IACT would have ~40 line gammas for a line branching fraction ~.003. The IACT extragalactic gamma background would be ~60 (100GeV mass WIMP).

# Example B. Milky Way dark matter halo



# EGRET diffuse "GeV excess" -still up for grabs!

Hunter et al (1997); similar "GeV excess" in all sky regions



# Back-of-the-envelope line significance

- Consider high latitude region |b|>10deg (|b|>30deg for |I|<30deg), 5 years GLAST on-orbit
- line background is flux within  $\Delta E/E=0.235$  at  $M_{WIMP}$ ,  $\gamma Z$  line
- Assume WIMP continuum is 30% of galactic diffuse flux for E>.01M<sub>WIMP</sub>
- Assume 0.1% branching fraction to line
- # sigma is no. line counts/sqrt(no. bkgd counts)



nsigma

### **Example C: Galactic Center**

Mayer-Hasselwander (1998)

- EGRET point source

#### **Spatial analysis**

- •100MeV-300MeV (I ~ -0.75deg)
- •300MeV-1GeV (I ~ -0.30deg)
- > 1GeV (I ~ 0.05deg)
- > 5GeV (I ~ 0.20deg)

New diffuse component in the galactic center region, HESS (2006)



Galactic center mSUGRA sensitivity: small tan(β) regime



Galactic center mSUGRA sensitivity: large tan(β) regime



# Dark matter neutrino detection technique



### Neutrino detectors





Larry Wai / SLAC





Feb.2006 – 1 line (12 lines by 2007)

### Solar WIMP sensitivity



Larry Wai / SLAC

#### dark matter anti-matter sources



### Anti-matter detectors







July 21, 2006 - VLCW06 Cosmology Session Larry Wai / SLAC

AMS-1

Dark matter anti-matter spectra



#### Future of indirect detection

#### Impact of new information

- Direct detection results on cross-section will impact expected neutrino flux from solar WIMP accumulation
- WIMP mass measurements (from direct, LHC, GLAST?) will impact expected annihilation spectrum; i.e. what threshold do we need for IACT line measurements?
- Location of WIMP annihilation sources by GLAST would dramatically alter the landscape; i.e. tell IACTs where to look!

#### Indirect experiments

- ICECUBE, PAMELA, AMS-2 – discovery potential for large mass, large lepton branching fraction scenarios
- GLAST, IACTS, &
   Beyond VERITAS –
   accurate line branching
   fraction measurements
   would constrain
   particle theory

### Indirect detection summary

