Threshold resummation in momentum space from effective theory Thomas Becher #Fermilab Vancouver Linear Collider Workshop '06, UBC

TB, M.Neubert, hep-ph/0605050
TB, B. Pecjak and M. Neubert, hep-ph/0607228 ← appeared today

Why resummation?

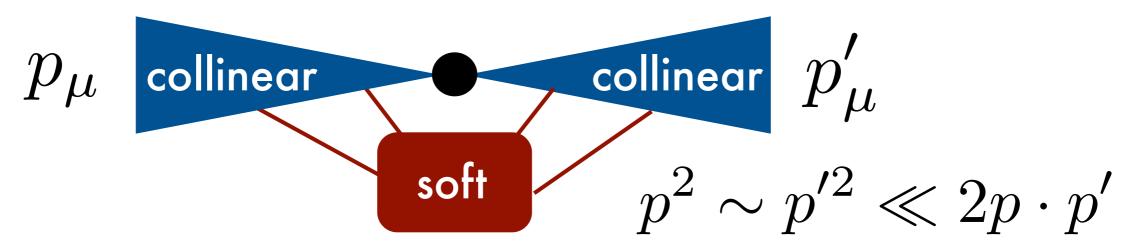
- Fixed order perturbation theory problematic for problems with widely separated scales Q₁>> Q₂.
 - Large logarithms $\alpha_s^n \operatorname{Log}^n(Q_1/Q_2)$ and $\alpha_s^n \operatorname{Log}^{2n}(Q_1/Q_2)$. \leftarrow Sudakov logarithms
 - Scale in coupling? $\alpha_s(Q_1)$ or $\alpha_s(Q_2)$?
- Solution to both problems: integrate out physics at Q₁, solve RG, evolve to lower scale Q₂.

Resummation for collider processes

- An old problem! In the past 20 year resummations were performed for many processes with scale hierarchies
 - DIS for $x \rightarrow 1$, Drell-Yan and Higgs production for Q²/s $\rightarrow 1$, for $Q_T^2/Q^2 \rightarrow 0$.
 - e⁺e⁻ event shapes, hadronic event shapes, ...
 - • • •
 - LL for arbitray observables with MC.
- Will talk about a new method to perform resummation of large perturbative log's in collider processes.
 - Based on RG in Soft-Collinear Effective Theory

Soft-collinear effective theory

Bauer, Pirjol, Stewart '00

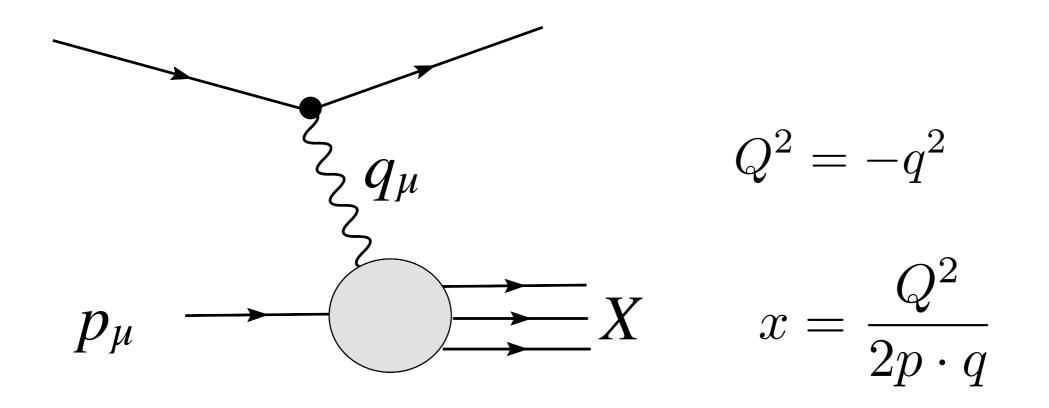


- Eff. theory to analyze processes involving large momentum transfers and small invariant masses
- Originally developed to analyze *B*-meson decays to light hadrons
 - $B \rightarrow \pi \pi$, $B \rightarrow X_u l \nu$, ...

Work in A progress

- So far, we have analyzed only simplest process, DIS for $x \rightarrow 1$ (as well as inclusive *B*-decays)
 - High precision: Next-to-next-to-next-to-leading logarithmic accuracy (N³LL)
 - Detailed comparison with standard approach
 - Drell-Yan process and Higgs production for Q²/s
 →1 underway. (See also Idilbi, Ji and Yuan, hep-ph/ 0605068)
- Bauer and Schwartz: interesting proposal to improve MCs with eff. theory
 - Not yet implemented, tested only at LL accuracy.

Kinematics for DIS



• Are interested in the limit $x \rightarrow 1$, more precisely $Q^2 \gg Q^2(1-x) \gg \Lambda^2_{QCD}$ $\approx M_X^2$

Factorization for DIS as $x \rightarrow 1$

Sterman '87

$$F_2^{\rm ns}(x,Q^2) = H(Q^2,\mu) Q^2 \int_x^1 \frac{dz}{z} J\left(Q^2 \frac{1-z}{z},\mu\right) \frac{x}{z} \phi_q^{\rm ns}\left(\frac{x}{z},\mu\right)$$

hard **x** jet \bigotimes PDF

 $Q^2 >> Q^2(1-x) >> \Lambda^2$

• Rederivation in SCET had troubled history

- Claims of nonfactorization, different form of factorization, non-perturbative factorization...
- hep-ph/0607228 resolves these differences.
 - Proper identification of PDF as $x \rightarrow 1$ crucial.
- Resummation by solving RG equations for three parts.

Traditional method: moment space

Sterman '87, Catani and Trentadue '89

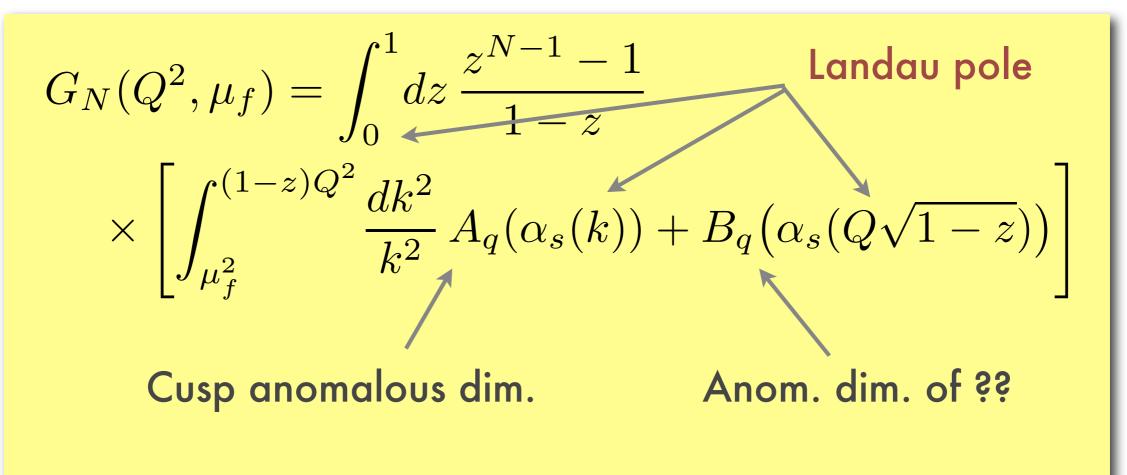
$$F_{2,N}^{ns}(Q^2) = \int_0^1 dx \, x^{N-1} F_2^{ns}(x,Q^2)$$
$$= C_N(Q^2,\mu_f) \sum_q e_q^2 \phi_{q,N}^{ns}(\mu_f)$$

- Convolution in momentum space → product in moment space
- $x \rightarrow 1$ corresponds to $N \rightarrow \infty$. Perturbation theory contains $\alpha_s^n \operatorname{Log}^n(N)$ and $\alpha_s^n \operatorname{Log}^{2n}(N)$
- Split:

 $C_N(Q^2, \mu_f) = g_0(Q^2, \mu_f) \exp \left[G_N(Q^2, \mu_f)\right]$

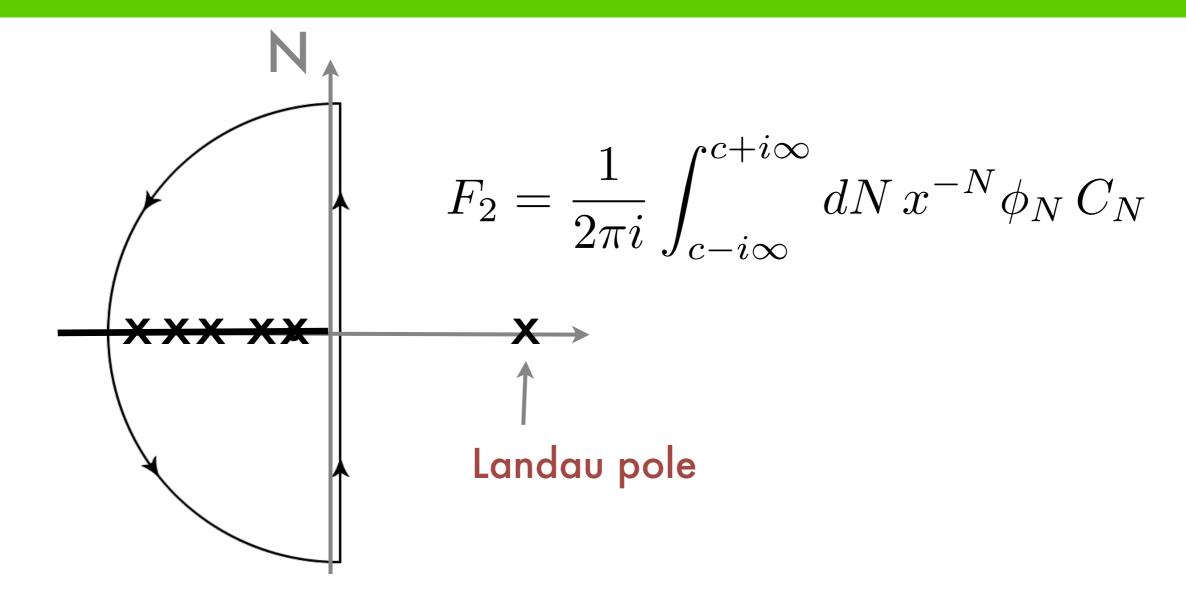
Resummation in moment space

 $C_N(Q^2, \mu_f) = g_0(Q^2, \mu_f) \exp\left[G_N(Q^2, \mu_f)\right]$



• A_q , B_q determined by matching to fixed order result. NNNLL: Moch, Vermaseren, Vogt '05

Mellin Inversion



- Can only be done numerically
- Problem with Fortran PDF's.

Resummation in momentum space

- Match QCD onto Soft-Collinear Effective theory.
- Use RG evolution to resum logarithms.

 $Q^{2} \qquad Q^{2}(1-x) \qquad \Lambda$ **match** \rightarrow **run** \rightarrow **match** \rightarrow **run** $H(\mu_{h}) \times U_{1}(\mu_{h}, \mu_{i}) \times J(\mu_{i}) \otimes U_{2}(\mu_{i}, \mu_{f}) \otimes \phi(\mu_{f})$

from on-shell quark FF

from quark prop. in light-cone gauge

First matching step light-like Wilson lines

Match QCD current onto EET current/

$$(\psi \gamma^{\mu} \psi)(x) \rightarrow (\bar{\xi}_{\bar{c}} W_{\bar{c}})(x_{-}) \gamma^{\mu} (W_{hc}^{\dagger} \xi_{hc})(x)$$

proton jet

- Wilson coefficient C_V and anomalous dimension γ_V from on-shell matching
 - on-shell FF is known to 2 loops ($\rightarrow C_V$), divergencies to 3 loops ($\rightarrow \gamma_V$)
- Match QCD current onto EFT current $\frac{d}{d \ln \mu} C_V(Q^2, \mu) = \left[\Gamma_{\text{cusp}}(\alpha_s) \ln \frac{Q^2}{\mu^2} + \gamma^V(\alpha_s) \right] C_V(Q^2, \mu)$

Running to intermediate scale:

Solution to the RG:

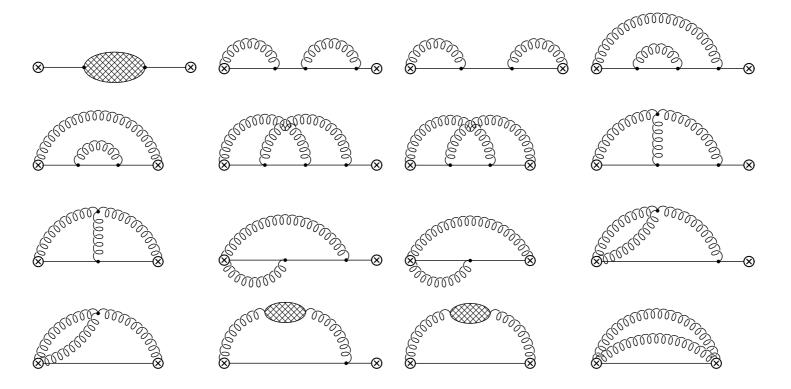
$$C_V(Q^2,\mu) = \exp\left[2S(\mu_h,\mu) - a_{\gamma^V}(\mu_h,\mu)\right] \left(\frac{Q^2}{\mu_h^2}\right)^{-a_{\Gamma}(\mu_h,\mu)} C_V(Q^2,\mu_h)$$

$$S(\nu,\mu) = -\int_{\alpha_s(\nu)}^{\alpha_s(\mu)} d\alpha \, \frac{\Gamma_{\rm cusp}(\alpha)}{\beta(\alpha)} \int_{\alpha_s(\nu)}^{\alpha} \, \frac{d\alpha'}{\beta(\alpha')} \,, \qquad a_{\Gamma}(\nu,\mu) = -\int_{\alpha_s(\nu)}^{\alpha_s(\mu)} d\alpha \, \frac{\Gamma_{\rm cusp}(\alpha)}{\beta(\alpha)}$$

Jet-function

$$J(p^2) = \frac{1}{\pi} \operatorname{Im} i \int d^x e^{-ipx} \langle 0 | \operatorname{T} \left[W^{\dagger}(0) \xi_{hc}(0) \,\overline{\xi}_{hc} W(x) | 0 \right] \, | 0 \rangle$$

- Propagator in light-cone gauge.
- Have evaluated $J(p^2)$ to 2 loops. TB, M.Neubert, hep-ph/0603140



RG evolution of the jet-function

$$\frac{dJ(p^2,\mu)}{d\ln\mu} = -\left[2\Gamma_{\rm cusp}(\alpha_s)\ln\frac{p^2}{\mu^2} + 2\gamma^J(\alpha_s)\right]J(p^2,\mu) -2\Gamma_{\rm cusp}(\alpha_s)\int_0^{p^2}dp'^2\frac{J(p'^2,\mu) - J(p^2,\mu)}{p^2 - p'^2}$$

$$J(p^{2},\mu) = \exp\left[-4S(\mu_{i},\mu) + 2a_{\gamma J}(\mu_{i},\mu)\right] \\ \times \widetilde{j}(\partial_{\eta},\mu_{i}) \frac{e^{-\gamma_{E}\eta}}{\Gamma(\eta)} \frac{1}{p^{2}} \left(\frac{p^{2}}{\mu_{i}^{2}}\right)^{\eta}, \qquad \eta = 2 \int_{\mu_{0}}^{\mu_{i}} \frac{d\mu}{\mu} \Gamma_{\text{cusp}}[\alpha_{s}(\mu)] \\ = 2a_{\Gamma}(\mu_{i},\mu).$$

• Associated jet-function \tilde{j} is Laplace transform of $J(p^2, \mu_i)$.

Result

• Plug RG solutions into factorization theorem, assume $\phi_q(x,\mu_f) \sim (1-x)^{b(\mu f)}$

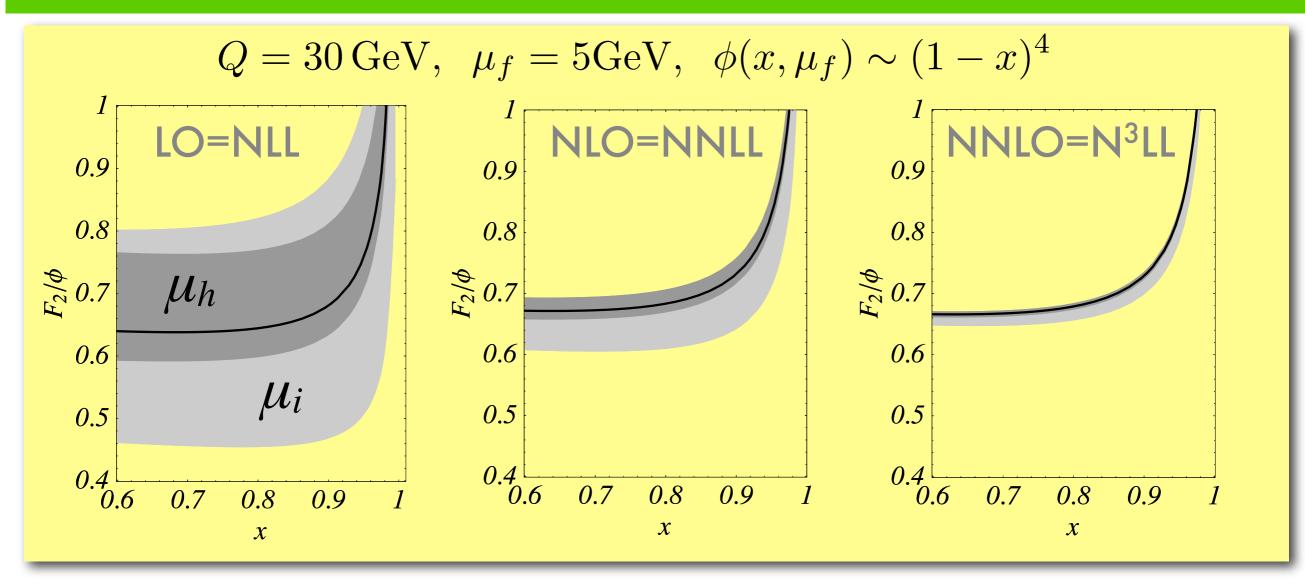
$$\frac{F_2^{\rm ns}(x,Q^2)}{\sum_q e_q^2 x \, \phi_q^{\rm ns}(x,\mu_f)} = |C_V(Q^2,\mu_h)|^2 \, U(Q,\mu_h,\mu_i,\mu_f) \\ \times (1-x)^\eta \, \tilde{j} \Big(\ln \frac{Q^2(1-x)}{\mu_i^2} + \partial_\eta,\mu_i \Big) \\ \times \frac{e^{-\gamma_E \eta} \, \Gamma(1+b(\mu_f))}{\Gamma(1+b(\mu_f)+\eta)} \,.$$

• Resummed result obtained after plugging in fixed order results for coefficient $C_{V_{r}}$ jet-function and anom. dimensions.

Difference to traditional approach

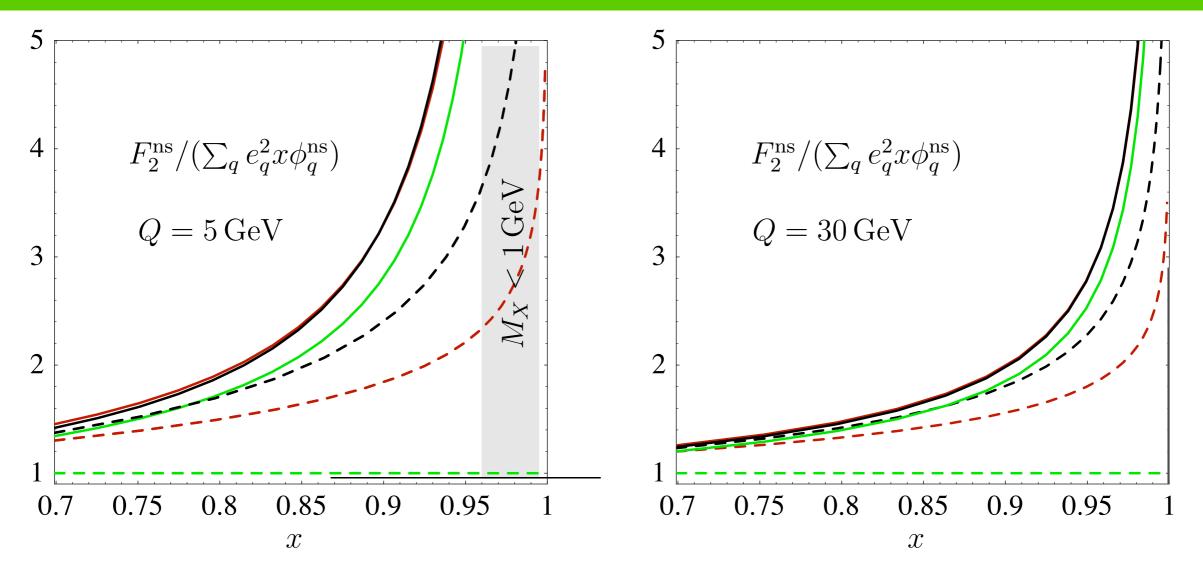
- Simple analytic result in momentum space
- No Landau pole ambiguities. No coupling below scales µ_h, µ_i and µ_f.
- Freedom to choose scales μ_h , μ_i and μ_f
 - Obtain fixed order for $\mu_h = \mu_i = \mu_f$. Trivial matching to fixed order result for generic *x*.
 - Set appropriate scales *after* integrating
 - Avoids large spurious power corrections discussed by Catani et al. hep-ph/9604351
 - Estimate uncertainties with scale variation

Result for $F_2^{ns}(\mathbf{x})/\phi_q(\mathbf{x})$



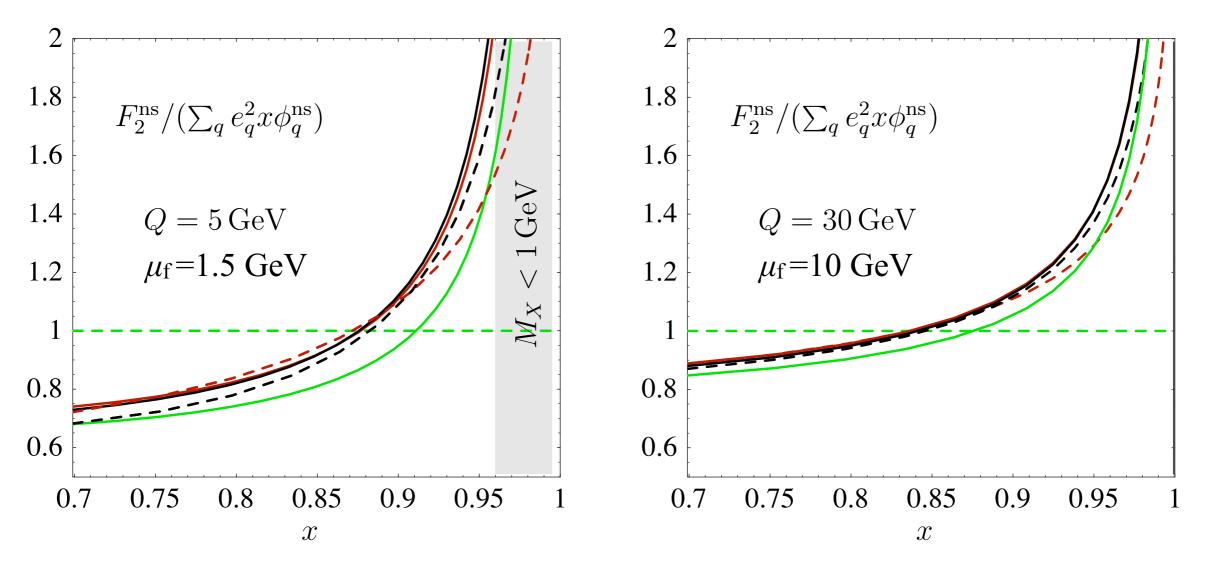
- Default scales: $\mu_h^2 = Q^2$ and $\mu_i^2 = Q^2(1-x)$
 - Bands obtained by varying these scales a factor of two up and down.
 - Matching scales are fixed in traditional approach.

Comparison with fixed order, $\mu_f = Q$



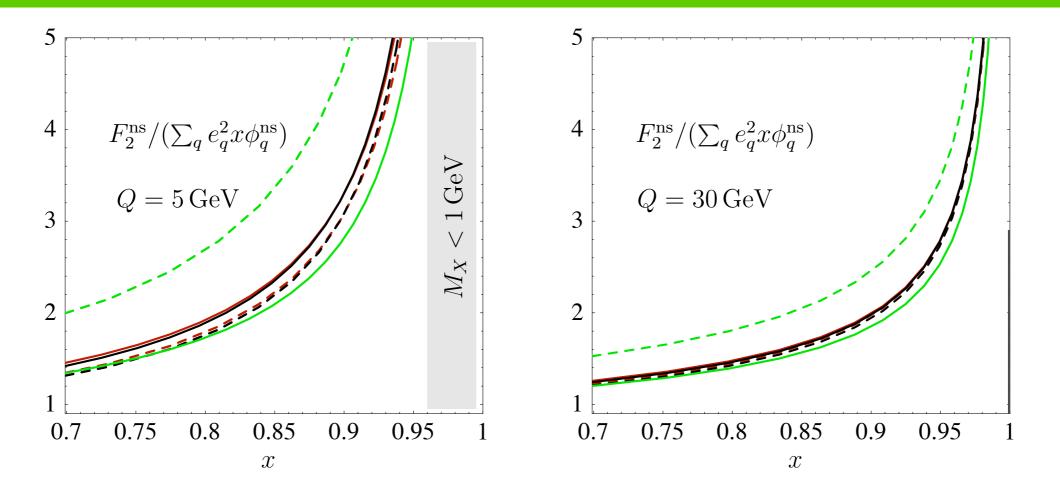
- LO (=NLL), NLO, NNLO
- Dashed: fixed order. Solid: resummed.
- Large K-factors.

Comparison with fixed order, low μ_f



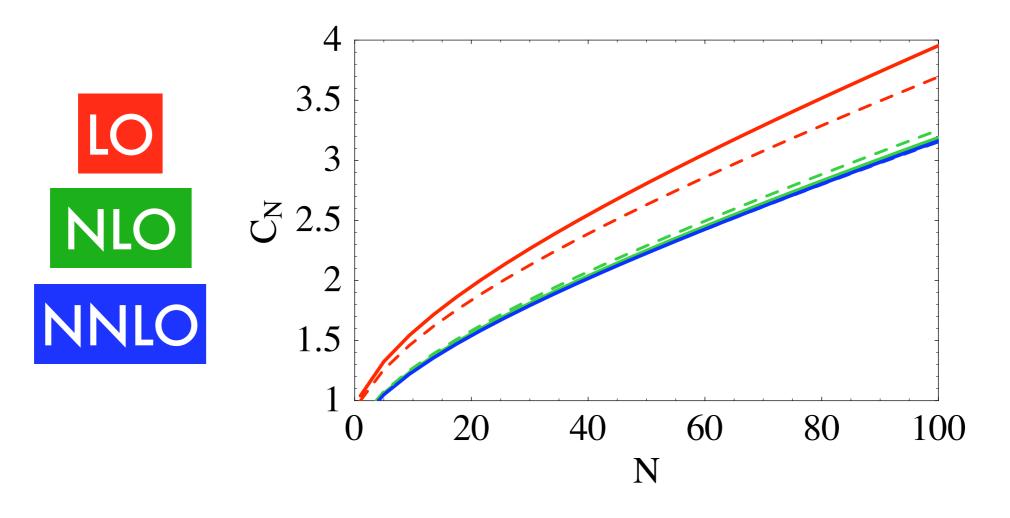
- LO (=NLL), NLO, NNLO
- Dashed: fixed order. Solid: resummed.
- Fixed order with $\mu = \mu_f$ fairly close to resummed result!

Comparison with moment space result



- Dashed: Mellin inverted moment space results. Solid: momentum space results.
- Only small numerical differences (different scale choice, 1/N corrections in moment space).
- Faster convergence of momentum space results.

Moments $C_N = F_{2,N} / \phi_N$



- Q=30 GeV, $\mu_h = Q$, $\mu_i^2 = Q^2/N$, $\mu_f = 5$ GeV.
- Solid: EFT, default scale. Dashed: Moch, Vermaseren, Vogt, hep-ph/0506288.
- Note: NNLO indistinguishable.

Connection with standard approach

 Can compare EFT expression for moments with standard results. The two agree provided that

$$\begin{pmatrix} 1 + \frac{\pi^2}{12} \nabla^2 + \dots \end{pmatrix} B_q(\alpha_s) = \gamma^J(\alpha_s) + \nabla \ln \tilde{j}(0,\mu) - \left(\frac{\pi^2}{12} \nabla - \frac{\zeta_3}{3} \nabla^2 + \dots \right) \Gamma_{\text{cusp}}(\alpha_s), \qquad \nabla = d/d \ln \mu^2.$$

• fulfilled with two-result from explicit calculation of $J(p^2)$.

Summary

- Traditionally, resummation for hard processes is performed in moment space.
 - Landau poles (in Sudakov exponent and Mellin inversion)
 - Mellin inversion only numerically
- Solving RG equations in SCET, we have obtained resummed expressions directly in momentum space.
 - Clear scale separation. No Landau pole ambiguities.
 - Analytic expressions for resummed rates.
 - Simple connection with fixed order expressions.
- Same technology should be applicable to many other processes.
 - Threshold resummation for DY and Higgs production under way.