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Why resummation?

• Fixed order perturbation theory 
problematic for problems with widely 
separated scales Q1 >> Q2.

• Large logarithms αsn Logn(Q1/Q2) and               
αsn Log2n(Q1/Q2).

• Scale in coupling? αs(Q1) or αs(Q2)?

• Solution to both problems: integrate out 
physics at Q1, solve RG, evolve to lower scale Q2.

Sudakov logarithms



Resummation for collider processes
• An old problem! In the past 20 year 

resummations were performed for many 
processes with scale hierarchies
• DIS for x→1, Drell-Yan and Higgs production for Q2/s 
→1, for QT2/Q2 →0.

• e+e- event shapes, hadronic event shapes, ... 

• ...
• LL for arbitray observables with MC.

• Will talk about a new method to perform 
resummation of large perturbative log’s in 
collider processes.
• Based on RG in Soft-Collinear Effective Theory



Soft-collinear effective theory

• Eff. theory to analyze processes 
involving large momentum transfers 
and small invariant masses 

• Originally developed to analyze B-
meson decays to light hadrons

• B→ππ,  B→Xu lν, ...

collinear collinear

soft
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Work in             progress 
• So far, we have analyzed only simplest 

process, DIS for x→1 (as well as inclusive 
B-decays)

• High precision: Next-to-next-to-next-to-leading 
logarithmic accuracy (N3LL) 

• Detailed comparison with standard approach

• Drell-Yan process and Higgs production for Q2/s 
→1 underway. (See also Idilbi, Ji and Yuan, hep-ph/
0605068)

• Bauer and Schwartz: interesting proposal to 
improve MCs with eff. theory

• Not yet implemented, tested only at LL accuracy.



Kinematics for DIS

• Are interested in the limit x→1, more 
precisely

Xpµ

qµ Q2
= −q2

x =
Q2

2p · q

Q2
! Q2(1 − x) ! Λ2

QCD

≈ M
2

X



Factorization for DIS as x→1

• Rederivation in SCET had troubled history
• Claims of nonfactorization, different form of 

factorization, non-perturbative factorization...

• hep-ph/0607228 resolves these differences.
• Proper identification of PDF as x→1 crucial.

• Resummation by solving RG equations for three 
parts.

1 Introduction

It is well known that fixed-order perturbation theory is not reliable for quantities involving
several disparate scales. In such cases, higher-order corrections are enhanced by large loga-
rithms of scale ratios. The standard solution to this problem is to split the calculation into a
series of single-scale problems by successively integrating out the physics associated with the
largest remaining scale. Perturbative logarithms are then resummed by renormalization-group
(RG) evolution from the larger scales to the smaller ones. For collider processes, resummation
is traditionally performed by other means, since it was not always clear how to systematically
integrate out the physics associated with high scales in such cases.

The simplest example of a high-energy process with a scale hierarchy which necessitates
resummation is deep-inelastic scattering (DIS) in the threshold region. As the Bjorken scaling
variable x → 1, the invariant mass of the hadronic system produced in the decay, MX =

Q
√

1−x
x (neglecting the nucleon mass), becomes much smaller than the momentum transfer

Q. The presence of the two scales is manifest in the QCD factorization theorem [1, 2, 3]

F ns
2 (x, Q2) = H(Q2, µ) Q2

∫ 1

x

dz

z
J

(
Q2 1 − z

z
, µ

) x

z
φns

q

(x

z
, µ

)
, (1)

for the non-singlet part of the structure function F2(x, Q2). The result (1) is valid in the
threshold region at leading power in M2

X/Q2 ≈ (1 − x) and Λ2
QCD/M2

X . As long as MX $
ΛQCD, both the jet function J(M2

X , µ) and the hard function H(Q2, µ) can be evaluated in
perturbation theory, whereas the parton distribution function φns

q (ξ, µ) is a non-perturbative
object. The result for the hard function involves single and (Sudakov) double logarithms of the
form αn

s lnm(Q/µ), with m ≤ 2n, while the integral over the jet function produces logarithms
αn

s lnm(MX/µ). Irrespective of the value of the renormalization scale µ, the fixed-order result
contains large logarithms.

Traditionally, the resummation of these logarithms is performed in moment space. The
threshold region of small MX is probed by large-N moments. The relevant scale in Mellin
space is Q/

√
N , so that the large perturbative logarithms depend on the moment parameter

N . In [1, 2] it was shown that these logarithms can be absorbed into a resummation exponent
GN , defined by integrals over two radiation functions Aq(αs) and Bq(αs),

GN (Q2, µ) =
∫ 1

0
dz

zN−1 − 1

1 − z

[∫ (1−z)Q2

µ2

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)]

. (2)

The functions Aq and Bq are determined by matching with results from fixed-order perturba-
tion theory and are currently known at three-loop order, enabling a nearly complete threshold
resummation to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy [4]. The re-
summed momentum-space structure function F2(x, Q2) is obtained from the moment-space
expression by an inverse Mellin transformation.

This approach to threshold resummation has several drawbacks. The first is related to
integrations over the Landau pole in the running coupling. These occur twice: once in the
integrals over the functions Aq and Bq in the resummation exponent, and once again when
the inverse Mellin transform is taken to obtain results in momentum space. To perform the
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 Traditional method: moment space

• Convolution in momentum space → 
product in moment space

• x→1  corresponds to N→∞. Perturbation 
theory contains αsn Logn(N) and αsn Log2n(N)

• Split:

IV. MOMENTUM-SPACE RESUMMATION

We are now ready to write down a resummed expres-
sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
(

ln
Q2

µ2
i

+ ∂η, µi

) e−γEη

Γ(η)

∫ 1

x

dξ
φns

q (ξ, µf )

(ξ − x)1−η ,

where

U(Q, µh, µi, µf ) = exp [4S(µh, µi) − 2aγV (µh, µi)]

×
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as

φns
q (ξ, µf )

∣∣
ξ→1

= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑

q e2
q xφns

q (x, µf )
= |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×(1 − x)η j̃
(

ln
Q2(1 − x)

µ2
i

+ ∂η, µi

)

×
e−γEη Γ(1 + b(µf))

Γ(1 + b(µf ) + η)
. (6)

This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
parameter b describing the large-ξ behavior of φns

q . The
right-hand side of (6) can be evaluated at any desired

order in resummed perturbation theory. Using currently
available results, it is possible to include terms at NNLO
[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1 − x) $ Λ2

QCD/Q2, since only then the inter-

mediate matching scale µi ∼ Q
√

1 − x is a short-distance
scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(7)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
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The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
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∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,
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Resummation in moment space

• Aq, Bq determined by matching to fixed  
order result.

•
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√
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scattering kernel with the parton distribution function is
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scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(7)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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Mellin Inversion

• Can only be done numerically

• Problem with Fortran PDF’s.

F2 =
1

2πi

∫ c+i∞

c−i∞

dN x−NφN CN

 N

xxxxx

Landau pole

x



Resummation in momentum space

H(µh) × U1(µh, µi) × J(µi) ⊗ U2(µi, µf ) ⊗ φ(µf )

match  →       run   →  match   →    run

Q2                                  Q2(1-x)                             Λ    

from on-shell quark FF from quark prop. in light-cone gauge

• Match QCD onto Soft-Collinear Effective 
theory.

• Use RG evolution to resum logarithms.



First matching step
• Match QCD current onto EFT current

• Wilson coefficient CV and anomalous 
dimension γV from on-shell matching
• on-shell FF is known to 2 loops (→CV), 

divergencies to 3 loops (→γV)

• Match QCD current onto EFT current

note that the coordinate argument x of the current operator scales as appropriate for a hard-
collinear momentum, x ∼ Q−1(1, ε−1, ε−

1
2 ). The minus and perpendicular components of the

momenta of anti-collinear and soft-collinear fields are much smaller than the corresponding
components of hard-collinear momenta and so should be expanded out. On the other hand, the
large plus component n ·p ∼ Q of the target nucleon is canceled by the momentum component
n · q of the current and turned into a momentum component of order εQ, which is of the same
order as the plus component of a hard-collinear momentum or of a soft-collinear momentum.
It follows that when matching the current operator onto SCET one must multipole expand the
anti-collinear and soft-collinear fields about x−. The expressions given above invariant under
hard-collinear and anti-collinear gauge transformations, while under a soft-collinear gauge
transformation both composite fields transform into Usc(x−) times themselves. It follows that
at tree level the gauge-invariant tree-level matching relation for the current is

(
ψγµψ

)
(x) →

(
ξ̄c̄Wc̄

)
(x−) γµ

(
W †

hcξhc

)
(x) . (12)

Only a single Dirac structure is possible for massless quarks.
Beyond tree-level, the matching relation at leading power gets generalized to (see the

analogous discussion in [3, 15])

(
ψγµψ

)
(x) →

∫
dt C̃V (t, n · q, µ)

(
ξ̄c̄Wc̄

)
(x−) γµ

(
W †

hcξhc

)
(x + tn̄)

= CV (−n · q n̄ · P , µ)
(
ξ̄c̄Wc̄

)
(x−) γµ

(
W †

hcξhc

)
(x) . (13)

In the first line we have used that n̄ · ∂ derivatives of hard-collinear fields are unsuppressed in
SCET power counting, allowing for arbitrary displacements of these fields along the n̄ light-
cone. In the second line, the object P is the operator of total hard-collinear momentum, and
the Wilson coefficient CV is the Fourier transform of the position-space Wilson coefficient C̃V

appearing in the first line. In the case at hand, the relevant components −n · q ≈ n̄ · P ≈ Q
are fixed by kinematics (see the relations (5)), and so we may write CV (Q2, µ) for simplicity.

2.3 Matching of the hadronic tensor

Inserting the matching relation (13) into (1), it follows that at leading power

W µν(p, q) → |CV (Q2, µ)|2 i

∫
d4x eiq·x (14)

×〈N(p)| T
{(

ξ̄c̄Wc̄

)
(x−) γµ

(
W †

hcξhc

)
(x)

(
ξ̄hcWhc

)
(0) γν

(
W †

c̄ ξc̄

)
(0)

}
|N(p)〉 .

The interactions of soft-collinear gluons with hard-collinear fields in (10) can be removed by
the field redefinitions [13]

ξhc(x) → Sn(x−) ξ(0)
hc (x) , Aµ

hc(x) → Sn(x−) Aµ(0)
hc (x) S†

n(x−) , (15)

which imply (W †
hcξhc)(x) → Sn(x−) (W (0)†

hc ξ(0)
hc )(x). The new hard-collinear fields with super-

scripts “(0)” are decoupled from soft-collinear fields and thus only interact among themselves.

5

proton jet

3 Renormalization-group evolution and resummation

The factorization formula for the DIS structure function derived in the previous section con-
tains physics associated with different momentum scales factorized into a hard coefficient
function CV , a jet function J , and non-perturbative parton distribution functions φns

q . These
three objects depend on a scale µ at which the corresponding effective theory operators are
renormalized. The hard matching coefficient and the jet function need to be calculated us-
ing perturbative QCD. These calculations can only be done at fixed order when the scale is
chosen appropriately so as to avoid large logarithms: the function CV should be computed
at a hard scale µh ∼ Q, while the jet function should be computed at an intermediate scale
µi ∼ MX ∼ Q

√
1 − x. The results of these calculations must then be evolved to the common

scale µ in (21) by solving renormalization-group (RG) evolution equations. [Say that these
are easier to derive in EFT than in Sterman’s approach? Also say what one should do
about the scale of the PDFs, and what is usually done in the literature!]

3.1 Evolution of the hard function

We begin by discussing the evolution of the hard matching coefficient CV in (13). At leading
power there is a single gauge-invariant SCET operator the QCD current can match onto, and
hence there is no operator mixing. The exact evolution equation takes the form

d

d lnµ
CV (Q2, µ) =

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) , (29)

where Γcusp is the universal cusp anomalous dimension of Wilson loops with light-like segments
[19, 20]. The appearance of the cusp logarithm and its coefficient in (29) can be traced back
to the presence of the closed Wilson loop S†

n̄(x−) Sn(x−) in the matching relation (28) for the
current operator after the decoupling transformation has been applied [15]. This term in the
evolution equation is associated with Sudakov double logarithms. The remaining term, γV ,
accounts for single-logarithmic evolution effects.

The exact solution to the evolution equation (29) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

](
Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (30)

where µh ∼ Q is a hard matching scale, at which the value of the Wilson coefficient CV is
calculated using fixed-order perturbation theory. The Sudakov exponent S and the exponents
an are the solutions to the partial differential equations

d

d lnµ
S(ν, µ) = −Γcusp

(
αs(µ)

)
ln

µ

ν
,

d

d ln µ
aΓ(ν, µ) = −Γcusp

(
αs(µ)

)
, (31)

(and similarly for aγV ) with initial conditions S(ν, ν) = aΓ(ν, ν) = aγV (ν, ν) = 0 at µ = ν.
These equations can be integrated by writing d/d lnµ = β(αs) d/dαs, where β(αs) = dαs/d lnµ
is the QCD β function. This yields the exact solutions [21]

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
, aΓ(ν, µ) = −

αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (32)
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Running to intermediate scale:

3 Renormalization-group evolution and resummation

The factorization formula for the DIS structure function derived in the previous section con-
tains physics associated with different momentum scales factorized into a hard coefficient
function CV , a jet function J , and non-perturbative parton distribution functions φns

q . These
three objects depend on a scale µ at which the corresponding effective theory operators are
renormalized. The hard matching coefficient and the jet function need to be calculated us-
ing perturbative QCD. These calculations can only be done at fixed order when the scale is
chosen appropriately so as to avoid large logarithms: the function CV should be computed
at a hard scale µh ∼ Q, while the jet function should be computed at an intermediate scale
µi ∼ MX ∼ Q

√
1 − x. The results of these calculations must then be evolved to the common

scale µ in (21) by solving renormalization-group (RG) evolution equations. [Say that these
are easier to derive in EFT than in Sterman’s approach? Also say what one should do
about the scale of the PDFs, and what is usually done in the literature!]

3.1 Evolution of the hard function

We begin by discussing the evolution of the hard matching coefficient CV in (13). At leading
power there is a single gauge-invariant SCET operator the QCD current can match onto, and
hence there is no operator mixing. The exact evolution equation takes the form

d

d lnµ
CV (Q2, µ) =

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) , (29)

where Γcusp is the universal cusp anomalous dimension of Wilson loops with light-like segments
[19, 20]. The appearance of the cusp logarithm and its coefficient in (29) can be traced back
to the presence of the closed Wilson loop S†

n̄(x−) Sn(x−) in the matching relation (28) for the
current operator after the decoupling transformation has been applied [15]. This term in the
evolution equation is associated with Sudakov double logarithms. The remaining term, γV ,
accounts for single-logarithmic evolution effects.

The exact solution to the evolution equation (29) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

](
Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (30)

where µh ∼ Q is a hard matching scale, at which the value of the Wilson coefficient CV is
calculated using fixed-order perturbation theory. The Sudakov exponent S and the exponents
an are the solutions to the partial differential equations

d

d lnµ
S(ν, µ) = −Γcusp

(
αs(µ)

)
ln

µ

ν
,

d

d ln µ
aΓ(ν, µ) = −Γcusp

(
αs(µ)

)
, (31)

(and similarly for aγV ) with initial conditions S(ν, ν) = aΓ(ν, ν) = aγV (ν, ν) = 0 at µ = ν.
These equations can be integrated by writing d/d lnµ = β(αs) d/dαs, where β(αs) = dαs/d lnµ
is the QCD β function. This yields the exact solutions [21]

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
, aΓ(ν, µ) = −

αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (32)
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3 Renormalization-group evolution and resummation

The factorization formula for the DIS structure function derived in the previous section con-
tains physics associated with different momentum scales factorized into a hard coefficient
function CV , a jet function J , and non-perturbative parton distribution functions φns

q . These
three objects depend on a scale µ at which the corresponding effective theory operators are
renormalized. The hard matching coefficient and the jet function need to be calculated us-
ing perturbative QCD. These calculations can only be done at fixed order when the scale is
chosen appropriately so as to avoid large logarithms: the function CV should be computed
at a hard scale µh ∼ Q, while the jet function should be computed at an intermediate scale
µi ∼ MX ∼ Q

√
1 − x. The results of these calculations must then be evolved to the common

scale µ in (21) by solving renormalization-group (RG) evolution equations. [Say that these
are easier to derive in EFT than in Sterman’s approach? Also say what one should do
about the scale of the PDFs, and what is usually done in the literature!]

3.1 Evolution of the hard function

We begin by discussing the evolution of the hard matching coefficient CV in (13). At leading
power there is a single gauge-invariant SCET operator the QCD current can match onto, and
hence there is no operator mixing. The exact evolution equation takes the form

d

d lnµ
CV (Q2, µ) =

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) , (29)

where Γcusp is the universal cusp anomalous dimension of Wilson loops with light-like segments
[19, 20]. The appearance of the cusp logarithm and its coefficient in (29) can be traced back
to the presence of the closed Wilson loop S†

n̄(x−) Sn(x−) in the matching relation (28) for the
current operator after the decoupling transformation has been applied [15]. This term in the
evolution equation is associated with Sudakov double logarithms. The remaining term, γV ,
accounts for single-logarithmic evolution effects.

The exact solution to the evolution equation (29) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

](
Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (30)

where µh ∼ Q is a hard matching scale, at which the value of the Wilson coefficient CV is
calculated using fixed-order perturbation theory. The Sudakov exponent S and the exponents
an are the solutions to the partial differential equations

d

d lnµ
S(ν, µ) = −Γcusp

(
αs(µ)

)
ln

µ

ν
,

d

d ln µ
aΓ(ν, µ) = −Γcusp

(
αs(µ)

)
, (31)

(and similarly for aγV ) with initial conditions S(ν, ν) = aΓ(ν, ν) = aγV (ν, ν) = 0 at µ = ν.
These equations can be integrated by writing d/d lnµ = β(αs) d/dαs, where β(αs) = dαs/d lnµ
is the QCD β function. This yields the exact solutions [21]

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
, aΓ(ν, µ) = −

αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (32)
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Jet-function

• Propagator in light-cone gauge.

• Have evaluated J(p2) to 2 loops.

J(p2) =
1

π
Im i

∫

dxe−ipx〈0|T
[

W †(0)ξhc(0) ξ̄hcW (x)|0
]

|0〉

Figure 1: Two-loop diagrams contributing to the jet function in QCD. Gluons emitted from the

crossed circles originate from the Wilson lines. Not shown are additional diagrams resulting from

mirror images in which the two external points are exchanged. The first diagram is the full fermion

two-point function, not just the one-particle irreducible part.

2.1 Evaluation of the two-loop diagrams

We first discuss the evaluation of the bare quantity jbare(Q
2) and later perform its renormalization.

Let us begin by quoting the result for the one-loop master integral

∫
ddk

(−1)−a−b−c
(
k2 + i0

)a [
(k + p)2 + i0

]b
(n̄ · k)c

= iπ
d
2

(
−p2 − i0

) d
2
−a−b

(n̄ · p)−c J(a, b, c) , (8)

with

J(a, b, c) =
Γ(d

2
− b) Γ(d

2
− a − c) Γ(a + b − d

2
)

Γ(a) Γ(b) Γ(d − a − b − c)
. (9)

At two-loop order, the most general integral we need is (omitting the “+i0” terms for brevity)

∫
ddk

∫
ddl

(−1)−a1−a2−a3−b1−b2−b3−c1−c2
(
k2
)a1 (l2

)a2 [(k − l)2
]a3 [(k + p)2

]b1 [(l + p)2
]b2 [(k + l + p)2

]b3 (n̄ · k)c1 (n̄ · l)c2

= −πd
(
−p2
)d−a1−a2−a3−b1−b2−b3

(n̄ · p)−c1−c2 J(a1, a2, a3, b1, b2, b3, c1, c2) . (10)

We use the same standard reduction techniques as in the two-loop calculation of the soft function [2]

to express all integrals we need for the evaluation of the diagrams in Figure 1 in terms of four master

integrals Mn. Introducing the dimensional regulator ε = 2 − d/2, we obtain

M1 = J(1, 1, 0, 0, 0, 1, 0, 0) =
Γ3(1 − ε) Γ(2ε − 1)
Γ(3 − 3ε)

,

3
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RG evolution of the jet-function

• Associated jet-function j is Laplace 
transform of J(p2,µi).

form factor is infrared divergent and must be regular-
ized. When the SCET graphs are subtracted from the
QCD result, the infrared poles in 1/ε get cancelled and
replaced by ultraviolet poles. To obtain the matching co-
efficient we introduce a renormalization factor ZV , which
absorbs these poles. At one-loop order this gives [6]

CV (Q2, µ) = 1 +
CF αs

4π

(
−L2 + 3L − 8 +

π2

6

)
,

where L = ln(Q2/µ2) and αs = αs(µ). The two-loop
expression for CV can be found in [1]. The scale depen-
dence of the Wilson coefficient is governed by the evolu-
tion equation

dCV (Q2, µ)

d lnµ
=

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) ,

(1)

where Γcusp is the universal cusp anomalous dimension
of Wilson loops with light-like segments [13], which is
associated with the appearance of Sudakov double loga-
rithms. The quantity γV accounts for single-logarithmic
evolution effects. The anomalous dimension can be ob-
tained from the coefficient of the 1/ε pole term in the
renormalization factor ZV . Using the results of [12] it
can be calculated at three-loop order. The result is pre-
sented in [1].

The jet function J is defined in terms of the disconti-
nuity of a vacuum correlator of two quark fields, made
gauge invariant by the introduction of Wilson lines. It
obeys the integro-differential evolution equation [14]

dJ(p2, µ)

d ln µ
= −

[
2Γcusp(αs) ln

p2

µ2
+ 2γJ(αs)

]
J(p2, µ)

− 2Γcusp(αs)

∫ p2

0
dp′2

J(p′2, µ) − J(p2, µ)

p2 − p′2
.

We encounter again the cusp anomalous dimension, and
in addition a new function γJ , which has been calculated
in [14] at two-loop order, and whose three-loop coefficient
is determined in [1].

III. SOLUTIONS OF THE RG EQUATIONS

The exact solution to the evolution equation (1) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

]

×
(

Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (2)

where µh ∼ Q is a hard matching scale, at which the
value of the coefficient CV is calculated using fixed-order
perturbation theory. The Sudakov exponent S and the
exponents an are given by

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
,

aΓ(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (3)

and similarly for aγV , where β(αs) = dαs/d lnµ is
the β-function. The explicit perturbative expansions of
these expressions valid at next-to-next-to-leading order
(NNLO) in renormalization-group (RG) improved per-
turbation theory are given in [1].

An important object in the derivation of the solution
to the evolution equation for J is the associated jet func-
tion j̃, which has originally been defined in terms of an
integral over the jet function followed by a certain re-
placement rule [15]. More elegantly, it can be obtained
by the Laplace transformation

j̃
(

ln
Q2

µ2
, µ

)
=

∫
∞

0
dp2 e−sp2

J(p2, µ) ,

where s = 1/(eγEQ2). The inverse transformation is

J(p2, µ) =
1

2πi

∫ c+i∞

c−i∞

ds esp2

j̃
(

ln
1

eγEs µ2
, µ

)
. (4)

Using the evolution equation for the jet function we find
that the associated jet function obeys

d

d lnµ
j̃
(

ln
Q2

µ2
, µ

)

= −
[
2Γcusp(αs) ln

Q2

µ2
+ 2γJ(αs)

]
j̃
(

ln
Q2

µ2
, µ

)
,

which is analogous to the evolution equation (1) for the
hard function. Inserting the solution to this equation into
the inverse transformation (4) we obtain

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]

× j̃(∂η, µi)
e−γEη

Γ(η)

1

p2

(
p2

µ2
i

)η

, (5)

where η = 2aΓ(µi, µ), and ∂η denotes a derivative with
respect to this quantity. The above form of the result is
valid as long as η > 0 (i.e., µ < µi). For negative η the
singularity at p2 = 0 must be regularized using a star
distribution [1]. Relation (5) is one of the main results
of this Letter. It relates J to the associated jet function
j̃ evaluated at the scale µi, where it can be computed
using fixed-order perturbation theory. At one-loop order

j̃(L, µ) = 1 +
CF αs

4π

(
2L2 − 3L + 7 −

2π2

3

)
,

where in (5) the argument L is replaced by the deriva-
tive operator ∂η. The two-loop expression for j̃ can be
extracted from [14].

2

form factor is infrared divergent and must be regular-
ized. When the SCET graphs are subtracted from the
QCD result, the infrared poles in 1/ε get cancelled and
replaced by ultraviolet poles. To obtain the matching co-
efficient we introduce a renormalization factor ZV , which
absorbs these poles. At one-loop order this gives [6]
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,

where L = ln(Q2/µ2) and αs = αs(µ). The two-loop
expression for CV can be found in [1]. The scale depen-
dence of the Wilson coefficient is governed by the evolu-
tion equation
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+ γV (αs)
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where Γcusp is the universal cusp anomalous dimension
of Wilson loops with light-like segments [13], which is
associated with the appearance of Sudakov double loga-
rithms. The quantity γV accounts for single-logarithmic
evolution effects. The anomalous dimension can be ob-
tained from the coefficient of the 1/ε pole term in the
renormalization factor ZV . Using the results of [12] it
can be calculated at three-loop order. The result is pre-
sented in [1].
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We encounter again the cusp anomalous dimension, and
in addition a new function γJ , which has been calculated
in [14] at two-loop order, and whose three-loop coefficient
is determined in [1].

III. SOLUTIONS OF THE RG EQUATIONS

The exact solution to the evolution equation (1) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

]

×
(

Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (2)

where µh ∼ Q is a hard matching scale, at which the
value of the coefficient CV is calculated using fixed-order
perturbation theory. The Sudakov exponent S and the
exponents an are given by

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
,

aΓ(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (3)

and similarly for aγV , where β(αs) = dαs/d lnµ is
the β-function. The explicit perturbative expansions of
these expressions valid at next-to-next-to-leading order
(NNLO) in renormalization-group (RG) improved per-
turbation theory are given in [1].

An important object in the derivation of the solution
to the evolution equation for J is the associated jet func-
tion j̃, which has originally been defined in terms of an
integral over the jet function followed by a certain re-
placement rule [15]. More elegantly, it can be obtained
by the Laplace transformation

j̃
(

ln
Q2

µ2
, µ

)
=

∫
∞

0
dp2 e−sp2

J(p2, µ) ,

where s = 1/(eγEQ2). The inverse transformation is

J(p2, µ) =
1

2πi

∫ c+i∞

c−i∞

ds esp2

j̃
(

ln
1

eγEs µ2
, µ

)
. (4)

Using the evolution equation for the jet function we find
that the associated jet function obeys

d

d lnµ
j̃
(

ln
Q2

µ2
, µ

)

= −
[
2Γcusp(αs) ln

Q2

µ2
+ 2γJ(αs)

]
j̃
(

ln
Q2

µ2
, µ

)
,

which is analogous to the evolution equation (1) for the
hard function. Inserting the solution to this equation into
the inverse transformation (4) we obtain

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]

× j̃(∂η, µi)
e−γEη

Γ(η)

1

p2

(
p2

µ2
i

)η

, (5)

where η = 2aΓ(µi, µ), and ∂η denotes a derivative with
respect to this quantity. The above form of the result is
valid as long as η > 0 (i.e., µ < µi). For negative η the
singularity at p2 = 0 must be regularized using a star
distribution [1]. Relation (5) is one of the main results
of this Letter. It relates J to the associated jet function
j̃ evaluated at the scale µi, where it can be computed
using fixed-order perturbation theory. At one-loop order

j̃(L, µ) = 1 +
CF αs

4π

(
2L2 − 3L + 7 −

2π2

3

)
,

where in (5) the argument L is replaced by the deriva-
tive operator ∂η. The two-loop expression for j̃ can be
extracted from [14].

2

~

where η = 2aΓ(µi, µ). This solution is valid as long as η > 0, which implies that µ < µi.
Equation (38) is completely analogous to the solution for the evolution equation of the B-
meson shape function found in [18, 21] using a technique developed in [23].

Using the connection between J and j̃ implied by Laplace transformation, it is possible to
derive an even more elegant expression for the jet function J(p2, µ), which does not involve
an integral and which is valid for both µ > µi and µ < µi. The result relates J to the
associated jet function j̃ evaluated at the scale µi, where it can be computed using fixed-order
perturbation theory. We obtain [Refer to the “wonderful formula” in B → Xsγ decay?]

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]
j̃(∂η, µi)

[
1

p2

(
p2

µ2
i

)η]

∗

e−γEη

Γ(η)
, (39)

where ∂η denotes a derivative with respect to the quantity η, and the star distribution is
defined as [24]

∫ Q2

0

dp2

[
1

p2

(
p2

µ2

)η]

∗
f(p2) =

∫ Q2

0

dp2 f(p2) − f(0)

p2

(
p2

µ2

)η

+
f(0)

η

(
Q2

µ2

)η

, (40)

where f(p2) is a smooth test function. The subtraction term involving f(0) is only required
if η < 0. In the form given above formula (39) holds as long as η > −1, which is sufficient for
all practical purposes. For even smaller values of η, it would be necessary to perform further
subtractions in (40) by using the double-star distributions introduced in [25].

3.3 Matching conditions and anomalous dimensions

In order to evaluate the solutions (30) and (39) of the RG equations we need as matching
conditions the value CV (Q2, µh) of the hard function at the scale µh ∼ Q, and the result for
the associated jet function j̃(L, µi) at the intermediate scale µi ∼ Q

√
1 − x. These functions

are free of large logarithms and hence can be reliably computed using fixed-order perturbation
theory. We also need perturbative expressions for the anomalous dimensions Γcusp, γV , and
γJ .

The hard matching coefficient CV (Q2, µ) is extracted in the first matching step, when the
vector current in full QCD is matched onto an effective current built out of operators in SCET.
To obtain an expression for the Wilson coefficient one must compute, at a given order in αs,
perturbative expressions for the photon vertex function in the two theories. The calculation
is simplified greatly by performing these calculations on-shell, in which case all loop graphs
in the effective theory are scale-less and hence vanish. The bare on-shell vertex function in
QCD (called the on-shell quark form factor) has been studied extensively in the literature.
The form factor is infrared divergent and can be regularized using dimensional regularization.
The bare form factor at two-loop order was calculated long ago [26, 27, 28, 29, 30], [I believe
the first calculation is incorrect! I havn’t checked the other papers except for the one
by Gehrman et al.!] and recently the infra-red divergent contributions have even been
computed at three-loop order [31]. [Also, in a heroic effort, Manohar recently succeeded
to obtain the expression valid at one-loop order [8]!] When the (vanishing) SCET graphs
are subtracted from the QCD result, the infrared poles in 1/ε get transformed into ultraviolet
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result is [15]

Γ(∆) =
G2Fα

32π4
|VtbV∗ts|

2m3b m
2
b(µh) |Hγ(µh)|

2U1(µh, µi)U2(µi, µ0)

(
∆

µ0

)η
(1)

×
{
j̃
(
ln
mb∆

µ2
i

+ ∂η, µi
)
s̃
(
ln
∆

µ0
+ ∂η, µ0

) e−γEη

Γ(1 + η)

[
1 −
η(1 − η)
6

µ2π
∆2
+ . . .

]
+ O
(
∆

mb

)}
.

Here mb is the b-quark pole mass, and mb(µ) denotes the running mass defined in the MS scheme.

The only hadronic parameter entering at this order is the quantity µ2π related to the b-quark kinetic

energy inside the Bmeson. The ellipses represent subleading corrections of order (ΛQCD/∆)
3, which

are unknown. The pole mass and µ2π must be eliminated in terms of related parameters defined in

a physical subtraction scheme, such as the shape-function scheme [16, 17]. The scales µh ∼ mb,

µi ∼
√
mb∆, and µ0 ∼ ∆ are hard, intermediate, and soft matching scales. The hard function Hγ,

the jet function j̃, and the soft function s̃ encode the contributions to the rate associated with these

scales. Note that all information about the short-distance quantum fluctuations associated with the

weak-interaction vertices in the effective weak Hamiltonian are contained in Hγ. Logarithms of

ratios of the various scales are resummed into the evolution functions U1 (evolution from the hard to

the intermediate scale) and U2 (evolution from the intermediate to the soft scale), as well as into the

quantity

η = 2

∫ µi

µ0

dµ

µ
Γcusp[αs(µ)] , (2)

which is given in terms of an integral over the universal cusp anomalous dimension of Wilson loops

with light-like segments [18]. The result (1) is formally independent of the choices of the match-

ing scales. In practice, a residual scale dependence remains because one is forced to truncate the

perturbative expansions of the various objects in the formula for the decay rate. Reducing the scale

uncertainty associated with the lowest short-distance scale, ∆ ≈ 1GeV, is the goal of the present
work.

The soft function s̃ in (1) is related to the original B-meson shape function S (ω, µ) [11] through

a series of steps. Starting from a perturbative calculation of the shape function in the parton model

with on-shell b-quark states, we first define

s
(
ln
Ω

µ
, µ
)
≡
∫ Ω

0

dω S parton(ω, µ) . (3)

ForΩ ( ΛQCD, this parton-model expression gives the leading term in a systematic operator-product
expansion of the integral over the true shape function [15]. The first power correction is linked to

the leading term by reparameterization invariance [19, 20] and gives rise to the term proportional to

µ2π/∆
2 in (1). While the perturbative expression for S parton involves singular distributions [16], the

function s has a double-logarithmic expansion of the form

s(L, µ) = 1 +

∞∑

n=1

(
αs(µ)

4π

)n (
c
(n)

0
+ c

(n)

1
L + · · · + c(n)

2n−1L
2n−1 + c

(n)

2n
L2n
)
. (4)

The function s̃ is then obtained by the replacement rule [15]

s̃(L, µ) ≡ s(L, µ)
∣∣∣∣
Ln→In(L)

, (5)

2



• Plug RG solutions into factorization 
theorem, assume φq(x,μf) ~ (1-x)b(μf)

• Resummed result obtained after plugging in 
fixed order results for coefficient CV,  jet-function 
and anom. dimensions.
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Threshold Resummation in Momentum Space from Effective Field Theory
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Methods from soft-collinear effective theory are used to perform the threshold resummation of
Sudakov logarithms for the deep-inelastic structure function F2(x,Q2) in the endpoint region x → 1
directly in momentum space. An explicit all-order formula is derived, which expresses the short-
distance coefficient function C in the convolution F2 = C ⊗ φq in terms of Wilson coefficients and
anomalous dimensions defined in the effective theory. Contributions associated with the physical
scales Q2 and Q2(1 − x) are separated from non-perturbative hadronic physics in a transparent
way. A crucial ingredient to the momentum-space resummation is the exact solution to the integro-
differential evolution equation of the jet function, which is derived. The methods developed in this
Letter can be applied to many other hard QCD processes.
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I. INTRODUCTION

A generic problem in applications of perturbative QCD
to collider physics or heavy-quark physics is to disen-
tangle contributions associated with different momentum
scales, and to resum large logarithms of ratios of such
scales to all orders in the perturbative expansion. In
processes containing hadronic jets, a scale hierarchy is
created by the fact that the invariant mass of a colli-
mated jet is typically much smaller than the hard scale
of the process (e.g., the center-of-mass energy). The in-
tricate interplay of soft and collinear emissions then leads
to large Sudakov double logarithms. The resummation of
these logarithms is conventionally performed in moment
space, and predictions for differential cross sections in
momentum space are then obtained by an inverse Mellin
transformation. This procedure is cumbersome and often
leads to unphysical singularities, because the resumma-
tion formulae involve integrals over the Landau pole of
the running coupling. These singularities are dealt with
by means of ad hoc prescriptions, or by introducing arti-
ficial infrared cutoffs.

In this Letter we develop an approach based on ef-
fective field theory, which allows us to resum Sudakov
logarithms for a large class of processes directly in mo-
mentum space. The starting point is a factorization the-
orem for the cross section, in which contributions from
different momentum scales are separated in a transparent
way. Evolution equations for the various components in
the factorization formula are solved exactly in momen-
tum space, in such a way that one never encounters inte-
grals over the Landau pole. We illustrate the procedure
with the example of deep-inelastic scattering. However,
the same methods can be applied to many other hard
QCD processes, such as Drell-Yan lepton-pair produc-
tion, prompt photon production in hadron-hadron col-
lisions, Higgs-boson production in gluon-gluon fusion,
heavy-quark fragmentation, event shapes, and others.
Technical details of our derivations will be presented in
a forthcoming paper [1].

II. FACTORIZATION FORMULA

We focus on the flavor non-singlet component of the
structure function F2(x, Q2) in deep-inelastic scattering
(DIS) of electrons off a nuclear target, e− + N(p) →
e− +X(P ), denoting by q = P − p the momentum of the
virtual photon. We are interested in the region where the
Bjorken scaling variable x = Q2/(2p ·q) is near 1, so that
there is a hierarchy of scales Q2 # Q2(1 − x) # Λ2

QCD.
The intermediate scale Q2(1 − x) ≈ M2

X is set by the
invariant mass MX of the final-state jet. In this region
the structure function can be written in the factorized
form [2–4] (with µf the factorization scale and eq the
quark electric charge)

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µf )|2

× Q2

∫ 1

x

dξ J
(
Q2(ξ − x), µf

)
φns

q (ξ, µf ) .

This formula is valid to all orders in perturbation theory
and at leading power in (1 − x) and Λ2

QCD/M2
X . Here

CV is a hard matching coefficient, J is a jet function,
and φns

q is the non-singlet component of the quark dis-
tribution function in the nucleon. As shown in [1], a
relatively simple proof of the factorization formula can
be given using the technology of soft-collinear effective
theory (SCET) [5] (see [6–8] for earlier investigations).

In SCET the hard function CV is identified with the
Wilson coefficient in the matching relation of the QCD
vector current onto the unique leading-power current op-
erator in the effective theory. To calculate the Wilson co-
efficient one must compare perturbative expressions for
the photon vertex function in the two theories. The cal-
culation can be simplified by performing these calcula-
tions on-shell, in which case all loop graphs in the effec-
tive theory are scaleless and vanish in dimensional reg-
ularization. The bare on-shell vertex function in QCD
(called the on-shell quark form factor) has been studied
extensively at two-loop order and beyond [9–12]. The
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Result

IV. MOMENTUM-SPACE RESUMMATION

We are now ready to write down a resummed expres-
sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
(

ln
Q2

µ2
i

+ ∂η, µi

) e−γEη

Γ(η)

∫ 1

x

dξ
φns

q (ξ, µf )

(ξ − x)1−η ,

where

U(Q, µh, µi, µf ) = exp [4S(µh, µi) − 2aγV (µh, µi)]

×
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as

φns
q (ξ, µf )

∣∣
ξ→1

= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑

q e2
q xφns

q (x, µf )
= |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×(1 − x)η j̃
(

ln
Q2(1 − x)

µ2
i

+ ∂η, µi

)

×
e−γEη Γ(1 + b(µf))

Γ(1 + b(µf ) + η)
. (6)

This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
parameter b describing the large-ξ behavior of φns

q . The
right-hand side of (6) can be evaluated at any desired

order in resummed perturbation theory. Using currently
available results, it is possible to include terms at NNLO
[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1 − x) $ Λ2

QCD/Q2, since only then the inter-

mediate matching scale µi ∼ Q
√

1 − x is a short-distance
scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(7)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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Difference to traditional approach

• Simple analytic result in momentum space
• No Landau pole ambiguities. No coupling  

below scales μh, μi and μf.

• Freedom to choose scales μh, μi and μf

• Obtain fixed order for μh=μi=μf. Trivial matching 
to fixed order result for generic x.

• Set appropriate scales after integrating

•  Avoids large spurious power corrections 
discussed by Catani et al. hep-ph/9604351

• Estimate uncertainties with scale variation



Result for F2ns(x)/φq(x)

• Default scales: μh2=Q2 and μi2=Q2(1-x)
• Bands obtained by varying these scales a factor of two up 

and down.
• Matching scales are fixed in traditional approach. 
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Comparison with fixed order, μf =Q

• LO (=NLL), NLO, NNLO
• Dashed: fixed order. Solid: resummed.
• Large K-factors. 
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Figure 5: Comparison between fixed-order (dashed) and resummed results (solid) for the K
factor. The green curves are the LO result, red NLO, black NNLO. For the resummed result,
we set µh = Q, µi = MX , µf = Q, and b(µf) = 4. The fixed-order result is obtained by setting
all scales equal to µf .

leading logarithmic (LL) approximation is listed only for completeness, as it neglects terms
that are parametrically much larger than 1.

In Figure ??, we compare the fixed-order calculation of the K factor with the resummed
result for Q = 5GeV and Q = 30GeV. For the resummed result we use the default choice of

scales µh = Q, µi = MX = Q
√

1−x
x and take the asymptotic form of the parton distribution

(??) with b(µf) = 4 in both cases. The fixed-order results can be obtained from our resummed
expression (??) by simply setting µh = µi = µf . Following common practice we choose µf = Q
for the factorization scale. In this case the quantity η < 0, and because of the factor (1−x

x )η in
(??) the resummed results diverge as x approaches 1. The figure illustrates that higher-order
corrections become important as x → 1, and that fixed-order perturbation theory is no longer
adequate in this limit. The magnitude of the K factor can be reduced by adopting a lower
choice for the factorization scale, which is more in line with the philosophy of an effective
field-theory approach. For example, we may consider taking µf ≈ MX(x = 0.9) ≈ 0.32 Q,
corresponding to a typical hadronic invariant mass in the endpoint region. The corresponding
results are shown in Figure ??. We observe that with such a “smart choice” of the factorization
scale the K factor takes more moderate values, and also that the results of the resummation
are less significant.

In Figure ??, we show the scale dependence of the result obtained by varying the hard and
intermediate scales by a factor of 2 about their default values. The figure shows a dramatic
reduction in scale uncertainty when going from LO to NNLO. It also suggests that varying
the two matching scales individually by a factor of 2 may overestimate the perturbative un-
certainty, because the higher-order results lie near the center of the large band obtained by
varying the renormalization scales in the low-order ones. A variation of the scales by a factor

22



Comparison with fixed order, low μf 

• LO (=NLL), NLO, NNLO
• Dashed: fixed order. Solid: resummed.
• Fixed order with µ=µf fairly close to resummed result!
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Figure 6: Same as Figure 5, but with a lower choice of the factorization scale. Specifically, we
take µf = 1.5GeV for Q = 5GeV (left), and µf = 10GeV for Q = 30GeV (right).
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Figure 7: Scale variation of the K factor at Q = 30GeV. The light-gray band is obtained
by varying MX/2 < µi < 2MX , while the dark-gray band arises from varying the hard scale
Q/2 < µh < 2Q. We set µf = 30GeV and b(µf ) = 4.
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Comparison with moment space result

• Dashed: Mellin inverted moment space results. Solid: 
momentum space results.

• Only small numerical differences (different scale 
choice, 1/N corrections in moment space).

• Faster convergence of momentum space results.
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Figure 9: Comparison between Mellin-inverted moment space results (dashed) and results
obtained in directly in x-space (solid). The green curves are the LO result, red NLO. The
black lines are NNLO results and are visually indistinguishable from the NLO curves for
Q = 30GeV. We set µh = µf = Q, and b(µf ) = 4. For the intermediate scale, we choose

µi = MX in momentum space and µi = Q/
√

N̄ in moment space.

c smaller than the value of N at which the pole occurs. Even with this prescription, the
numerical integral is not well behaved in the limit x → 1, since the damping of the integrand
becomes weaker and weaker as x approaches the endpoint. In Figure 9 we compare the results
for the x-space structure function obtained through numerical Mellin inversion with those
obtained directly in momentum space (62). One source of numerical differences arises because
the relation (72) is only approximate,4 so that the solution to the RG equation for JN(Q2, µ)
receives corrections which are suppressed as 1/N , while our momentum-space solution (46)
is exact. Another is that the default choice of the intermediate scale µi is different in the
two approaches. The numerical differences are noticeable for smaller values of Q, but become
negligible at Q = 30GeV.

In the effective-theory result for the moments, the Landau pole in the inverse Mellin trans-
formation can be avoided by performing the inversion to x-space with the appropriate scale
choice for momentum space, µi ≈ Q

√
1 − x, instead of µi = Q/

√
N̄ . The freedom to choose

the scales as appropriate for the quantity under consideration is an important advantage of
our approach. The Landau-pole ambiguity in the Mellin inversion is not the only problem that
arises from the fact that the scales cannot be varied in the standard resummation formalism.
An additional difficulty was pointed out in [5]. To illustrate it, let us consider the structure
function at the leading logarithmic level, even though this is not a consistent approximation
in RG-improved perturbation theory. Our result (62) then reduces to

K(x, Q2, µf) = exp [4S(µh, µi) + 2aΓ(µi, µf) ln(1 − x)] , (87)

4The exact form of the RG equation obeyed by the jet-function moments can be found in [31].
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Moments CN=F2,N/φN

• Q=30 GeV, µh = Q, µi2 = Q2/N, µf = 5 GeV.

• Solid: EFT, default scale. Dashed: Moch, 
Vermaseren, Vogt, hep-ph/0506288.

• Note: NNLO indistinguishable.
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Connection with standard approach

• Can compare EFT expression for 
moments with standard results. The 
two agree provided that

• fulfilled with two-result from explicit 
calculation of J(p2).

IV. MOMENTUM-SPACE RESUMMATION

We are now ready to write down a resummed expres-
sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
(

ln
Q2

µ2
i

+ ∂η, µi

) e−γEη

Γ(η)

∫ 1

x

dξ
φns

q (ξ, µf )

(ξ − x)1−η ,

where

U(Q, µh, µi, µf ) = exp [4S(µh, µi) − 2aγV (µh, µi)]

×
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as

φns
q (ξ, µf )

∣∣
ξ→1

= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑

q e2
q xφns

q (x, µf )
= |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×(1 − x)η j̃
(

ln
Q2(1 − x)

µ2
i

+ ∂η, µi

)

×
e−γEη Γ(1 + b(µf))

Γ(1 + b(µf ) + η)
. (6)

This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
parameter b describing the large-ξ behavior of φns

q . The
right-hand side of (6) can be evaluated at any desired

order in resummed perturbation theory. Using currently
available results, it is possible to include terms at NNLO
[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1 − x) $ Λ2

QCD/Q2, since only then the inter-

mediate matching scale µi ∼ Q
√

1 − x is a short-distance
scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(7)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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Summary
• Traditionally, resummation for hard processes is 

performed in moment space.
• Landau poles (in Sudakov exponent and Mellin inversion)
• Mellin inversion only numerically

• Solving RG equations in SCET, we have obtained 
resummed expressions directly in momentum 
space.
• Clear scale separation. No Landau pole ambiguities.
• Analytic expressions for resummed rates.
• Simple connection with fixed order expressions. 

• Same technology should be applicable to many 
other processes.
• Threshold resummation for DY and Higgs production 

under way.


