

Comparison of 2mrad and 14/20 mrad extraction lines

Ken Moffeit (via Eric Torrence) VLCW06 19 July 06

IPBI TN-2006-1 July 11, 2006

Comparison of 2 mrad and 14/20 mrad Crossing Angle Extraction Lines

Ken Moffeit, Takashi Maruyama, Yuri Nosochkov, Andrei Seryi and Mike Woods SLAC

William P. Oliver

Tufts University

Eric Torrence

University of Oregon

BDS Layout

14/20 mrad Extraction Line

The extraction line transport is simulated using the program GEANT.

Disrupted beam events were taken from files prepared by Andrei Seryi.

For these studies files:

cs11 corresponds to a normal ILC beam (mean energy 244.3 GeV and RMS 10.84 GeV)

cs13 with parameters set for large-y (mean energy 243.1 GeV and RMS 11.14 GeV).

cs13 dy = 4nm gives large-y parameter data sets with the centroid of the beams missing by 4nm in the vertical (mean energy 242.2 GeV and RMS 12.05 GeV)

cs13 dx =200nm has beams missing by 200nm in the horizontal (mean energy 243.3 GeV and RMS 10.94 GeV)

e+e- Interaction Region

Spin Precession

$$\theta_{spin} = \gamma \frac{g-2}{2} \cdot \theta_{bend} = \frac{E(GeV)}{0.44065} \cdot \theta_{bend}$$

Change in Bend Angle	Change in Spin Direction at 250 GeV	Longitudinal Polarization Projection
1 mrad	32.5 °	84.3%
275 μrad	8.9 °	98.8%
100 μrad	3.25 ° =56mrad	99.8%

Change in spin direction for various bend angles and the projection of the longitudinal polarization. Electron beam energy is 250 GeV.

2mrad x vs y

2mrad Extraction Line: Beam accepted and polarization projection for various +- 100 micron selections about the x value of the beam at the Compton IP. In each case abs(y+2.0cm)<100 microns and abs(x-137.45).

x +- 100 microns	%Beam within +-100microns in x & y	Polarization Projection
137.45	14.7	99.83
137.47	6.0	99.89
137.49	4.8	99.94
137.51	3.8	99.94

19 July 2006

20mrad Extraction Line with 2.019<y<-1.999cm and abs(x)<0.01cm

Condition (file name)	%Beam within +- 100microns in x & y	Polarization Projection
Nominal Beam Condition (cs11)	48.3	99.85
Large y (cs13)	36.7	99.76
Large y horizontal offset 200nm (cs13_dx200)	37.2	99.75
Large y vertical offset 4nm (cs13_dy4)	32.8	99.75

2 mrad Extraction Line with abs(y+2)<0.01cm and abs(x-137.45)<0.01cm

Condition (file name)	%Beam within +- 100microns in x & y	Polarization Projection
Nominal Beam Condition (cs11)	14.7	99.83
Large y (cs13)	7.6	99.83
Large y horizontal offset 200nm (cs13_dx200)	8.9	99.82
Large y vertical offset 4nm (cs13_dy4)	6.0	99.83

Beam Losses from the e+e- IR to the Compton Detector Plane

20 mrad Crossing Angle Extraction Line

	Losses	Beam	Lost Beam
Condition (file name)			
Nominal Beam Condition (cs11)	0	34883	<0.5 * 10-4
Large y (cs13)	0	30000	<0.6 * 10-4
Large y horizontal offset 200nm (cs13_dx200)	0	30000	<0.6 * 10-4
Large y vertical offset 4nm (cs13_dy4)	0	30000	<0.6 * 10-4

2 mrad Crossing Angle Extraction Line

	Losses	Beam	Lost Beam
Condition (file name)			
Nominal Beam Condition (cs11)	4	30000	1.3 * 10-4
Large y (cs13)	9	30000	3 * 10-4
Large y horizontal offset 200nm (cs13_dx200)	7	30000	2.3 * 10-4
Large y vertical offset 4nm (cs13_dy4)	18	30000	6 * 10-4

Beam Losses

Beam losses were further studied by using a file with the tails of the disrupted beam having events with energy less than 0.65 of the beam energy or the angle greater than 0.5 mrad:

http://www.slac.stanford.edu/~seryi/ILC_new_gp_files/cs11_hs/tail1_lt_0_65E0_or_gt_5 00urad.dat

e+e- Interaction Point

2mrad extraction line

Only 5899 of the 10,503 particles continue to the Compton Detector plane. This represents a loss of 2.62*10⁻⁴ of the 17.59 million original beam tracks.

Estimate ~50 photons/cm² are in the region of the Cherenkov counter cells for each bunch of 2*10¹⁰ electrons

Only ~20% above 10 MeV

Can reduce by local shielding of Cherenkov Detector

Compton Signal ~650 backscattered electrons per GeV or >1000 per 1cm cell

Synchrotron Radiation

20 mrad extraction line z=59.732m 2 mrad extraction line z=198.82m Peak at 249.881 GeV Loss 119.4 MeV Peak at 249.146 GeV Loss 854.1 MeV 249.5 249.75 250 248 249 249.8 Energy (GeV)

Table IV: Energy Loss from Synchrotron Radiation between the e+e-IR and the Center of the Energy Chicane.

a) 20 mrad Crossing Angle Extraction Line

Condition (file name)	Energy Loss (MeV)
Nominal Beam Condition (cs11)	119.4
Large y (cs13)	123.0
Large y horizontal offset 200nm (cs13_dx200)	122.7
Large y vertical offset 4nm (cs13_dy4)	124.3

b) 2 mrad Crossing Angle Extraction Line

Condition (file name)	Energy Loss (MeV)
Nominal Beam Condition (cs11)	854.2
Large y (cs13)	854.2
Large y horizontal offset 200nm (cs13_dx200)	828.5
Large y vertical offset 4nm (cs13_dy4)	859.4

Compton IP

z=147.682m

2 mrad extraction line z=269.076m

X (cm)

Conclusions

The 20 mrad extraction line has:

- •Core of beam within +-100microns has between 32 and 48% of the beam.
- •The polarization projection is 99.75 to 99.85% at the Compton IP.
- •No beam losses from e+e- IR to Compton detector plane out of 17.6 million beam tracks.
- •Beam energy loss due to synchrotron radiation to the middle of energy chicane (z=59.7 m) is only ~110 MeV and does not show variation with beam conditions.
- •The collimator at z=164.25 meters needs to be designed. It absorbs the synchrotron radiation above the 0.75 mrad beam stay clear allowing the Cherenkov detector to begin at y~14 cm.

The 2 mrad extraction line has:

- •There are large beam losses between e+e- IR and Compton detector plane (>2.6*10⁻⁴ are lost) giving secondary backgrounds of mainly photons in the region of the Cherenkov Detector.
- •A small percentage of beam is hit by laser spot +-100 microns (~15%) at the Compton IP and results in low Compton luminosity.
- •There are large beam energy losses (~850 MeV) due to synchrotron radiation between IR and the center of the energy chicane at z=198.82 meters.
- •Synchrotron radiation at Cherenkov Detector is favorable. The detector only sees the synchrotron radiation from the magnets of the polarimeter chicane, and this is contained between -9 and +2 cm. The first cell of the Cherenkov Detector starts at +10 cm.