Comparison of 2 mrad and 14/20 mrad extraction lines

## Ken Moffeit (via Eric Torrence) <br> VLCW06 19 July 06

## IPBI TN-2006-1

July 11, 2006

Comparison of 2 mrad and $14 / 20 \mathrm{mrad}$ Crossing Angle Extraction Lines

Ken Moffeit, Takashi Maruyama, Yuri Nosochkov, Andrei Seryi and Mike Woods

SLAC
William P. Oliver
Tufts University
Eric Torrence
University of Oregon

## BDS Layout

2 mrad


## 14/20 mrad Extraction Line



2 mrad Extraction Line

2 mrad extraction line

19 July 2006

20 mrad Extraction Line


2 mrad Extraction Line


The extraction line transport is simulated using the program

## GEANT.

Disrupted beam events were taken from files prepared by Andrei Seryi.

For these studies files:
cs11 corresponds to a normal ILC beam (mean energy 244.3 GeV and RMS 10.84 GeV )
cs13 with parameters set for large-y (mean energy 243.1 GeV and RMS 11.14 GeV).
cs13 dy $=4 \mathrm{~nm}$ gives large-y parameter data sets with the centroid of the beams missing by 4 nm in the vertical (mean energy 242.2 GeV and RMS 12.05 GeV )
cs13 dx =200nm has beams missing by 200nm in the horizontal (mean energy 243.3 GeV and RMS 10.94 GeV )
e+e- Interaction Region

$\mathrm{e}^{+e}$ - Interaction Region


## Compton IP



## Compton IP

## 20 mrad

Compton IP $z=147.682 \mathrm{~m}$
$-2.019<y<-1.999 \mathrm{~cm}$ abs $(x)<0.01 \mathrm{~cm}$


## 2 mrad

Compton IP $z=269.07 \mathrm{~m}$ $a b s(y+2)<0.01 \mathrm{~cm}$ abs $(\mathrm{x}-137.45)<0.01 \mathrm{~cm}$


## Spin Precession

$$
\theta_{\text {spin }}=\gamma \frac{g-2}{2} \cdot \theta_{\text {bend }}=\frac{E(G e V)}{0.44065} \cdot \theta_{\text {bend }}
$$

| Change in Bend Angle | Change in Spin <br> Direction at 250 GeV | Longitudinal <br> Polarization Projection |
| :---: | :---: | :---: |
| 1 mrad | $32.5^{\circ}$ | $84.3 \%$ |
| $275 \mu \mathrm{rad}$ | $8.9^{\circ}$ | $98.8 \%$ |
| $100 \mu \mathrm{rad}$ | $3.25^{\circ}=56 \mathrm{mrad}$ | $99.8 \%$ |

Change in spin direction for various bend angles and the projection of the longitudinal polarization. Electron beam energy is 250 GeV .

## 20 mrad

Compton IP $z=147.682 \mathrm{~m}$ $-2.019<Y<-1.999 \mathrm{~cm}$ $\mathrm{abs}(\mathrm{x})<0.01 \mathrm{~cm}$

## 2mrad

Compton IP $z=269.07 \mathrm{~m}$ Abs $(\mathrm{y}+2)<0.01 \mathrm{~cm}$ abs $(x-137.45)<0.01 \mathrm{~cm}$


Average Spin projection $\mathrm{P}=99.85 \%$


Average Spin projection $\mathrm{P}=99.83 \%$


## 2mrad x vs y



2mrad Extraction Line: Beam accepted and polarization projection for various +- 100 micron selections about the $x$ value of the beam at the Compton IP. In each case abs $(\mathrm{y}+2.0 \mathrm{~cm})<100$ microns and $\operatorname{abs}(\mathrm{x}-137.45)$.

| $\mathbf{x}+-\mathbf{1 0 0}$ <br> microns | \%Beam within +-100microns <br> in $\mathbf{x} \& \mathbf{y}$ | Polarization <br> Projection |
| :---: | :---: | :---: |
| 137.45 | 14.7 | 99.83 |
| 137.47 | 6.0 | 99.89 |
| 137.49 | 4.8 | 99.94 |
| 137.51 | 3.8 | 99.94 |

20mrad Extraction Line with $2.019<y<-1.999 \mathrm{~cm}$ and $\mathrm{abs}(\mathrm{x})<0.01 \mathrm{~cm}$

| Condition (file name) | \%Beam within +- <br> 100microns in x \& y | Polarization <br> Projection |
| :--- | :---: | :---: |
| Nominal Beam Condition (cs11) | 48.3 | 99.85 |
| Large y (cs13) | 36.7 | 99.76 |
| Large y horizontal offset 200nm <br> (cs13_dx200) | 37.2 | 99.75 |
| Large y vertical offset 4nm <br> (cs13_dy4) | 32.8 | 99.75 |

2 mrad Extraction Line with $\operatorname{abs}(y+2)<0.01 \mathrm{~cm}$ and $\mathrm{abs}(x-137.45)<0.01 \mathrm{~cm}$

| Condition (file name) | \%Beam within +- <br> $\mathbf{1 0 0 m i c r o n s ~ i n ~ x ~ \& ~ y ~}$ | Polarization <br> Projection |
| :--- | :---: | :---: |
| Nominal Beam Condition (cs11) | 14.7 | 99.83 |
| Large y (cs13) | 7.6 | 99.83 |
| Large y horizontal offset 200nm <br> (cs13_dx200) | 8.9 | 99.82 |
| Large y vertical offset 4nm <br> (cs13_dy4) | 6.0 | 99.83 |

Beam Losses from the e+e- IR to the Compton Detector Plane

## 20 mrad Crossing Angle Extraction Line

| Condition (file name) | Losses | Beam | Lost Beam |
| :--- | :---: | :---: | :---: |
| Nominal Beam Condition (cs11) | 0 | 34883 | $<0.5 * 10^{-4}$ |
| Large y (cs13) | 0 | 30000 | $<0.6 * 10^{-4}$ |
| Large y horizontal offset 200nm (cs13_dx200) | 0 | 30000 | $<0.6 * 10^{-4}$ |
| Large y vertical offset 4nm (cs13_dy4) | 0 | 30000 | $<0.6 * 10^{-4}$ |

2 mrad Crossing Angle Extraction Line

| Condition (file name) | Losses | Beam | Lost Beam |
| :--- | :---: | :---: | :---: |
| Nominal Beam Condition (cs11) | 4 | 30000 | $1.3 * 10^{-4}$ |
| Large y (cs13) | 9 | 30000 | $3 * 10^{-4}$ |
| Large y horizontal offset 200nm (cs13_dx200) | 7 | 30000 | $2.3 * 10^{-4}$ |
| Large y vertical offset 4nm (cs13_dy4) | 18 | 30000 | $6 * 10^{-4}$ |

## Beam Losses

Beam losses were further studied by using a file with the tails of the disrupted beam having events with energy less than 0.65 of the beam energy or the angle greater than 0.5 mrad:
http://www.slac.stanford.edu/~seryi//LC new gp files/cs11 hs/tail1 lt 0 65E0 or gt 5 00urad.dat
e+e- Interaction Point



Only 5899 of the 10,503 particles continue to the Compton Detector plane. This represents a loss of $2.62^{*} 10^{-4}$ of the 17.59 million original beam tracks. Compton Detector Plane
$\mathrm{z}=288.37 \mathrm{~m}$


Estimate $\sim 50$ photons $/ \mathrm{cm}^{2}$ are in the region of the Cherenkov counter cells for each bunch of $2 \star 10^{10}$ electrons

Only $\sim 20 \%$ above 10 MeV
Can reduce by local shielding of Cherenkov Detector

Compton Signal ~650 backscattered electrons per GeV or $>1000$ per 1 cm cell

## Synchrotron Radiation

20 mrad extraction line



## Compton IP

20 mrad extraction line $z=147.682 \mathrm{~m}$


19 July 2006
Ken Moffeit

## Compton Detector Plane

20 mrad extraction line

## Conclusions

## The 20 mrad extraction line has:

-Core of beam within +-100microns has between 32 and $48 \%$ of the beam.
-The polarization projection is 99.75 to $99.85 \%$ at the Compton IP.
-No beam losses from e+e- IR to Compton detector plane out of 17.6 million beam tracks.
-Beam energy loss due to synchrotron radiation to the middle of energy chicane ( $z=59.7 \mathrm{~m}$ ) is only $\sim 110 \mathrm{MeV}$ and does not show variation with beam conditions.
-The collimator at $z=164.25$ meters needs to be designed. It absorbs the synchrotron radiation above the 0.75 mrad beam stay clear allowing the Cherenkov detector to begin at $\mathrm{y} \sim 14 \mathrm{~cm}$.

## The 2 mrad extraction line has:

-There are large beam losses between e+e- IR and Compton detector plane ( $>2.6^{*} 10^{-4}$ are lost) giving secondary backgrounds of mainly photons in the region of the Cherenkov Detector.
-A small percentage of beam is hit by laser spot +-100 microns ( $\sim 15 \%$ ) at the Compton IP and results in low Compton luminosity.
-There are large beam energy losses ( $\sim 850 \mathrm{MeV}$ ) due to synchrotron radiation between IR and the center of the energy chicane at $\mathrm{z}=198.82$ meters.
-Synchrotron radiation at Cherenkov Detector is favorable. The detector only sees the synchrotron radiation from the magnets of the polarimeter chicane, and this is contained between -9 and +2 cm . The first cell of the Cherenkov Detector starts at +10 cm .

