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Not All e+e- ZHH Diagrams Contain the HHH Coupling
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Goals of This Analysis

• Verify that triple Higgs coupling error 
depends strongly on jet energy resolution

• Understand and characterize the source of 
the strong dependency on jet energy 
resolution

• Perform analysis using a SM background 
sample that contains all 2,4,6,8-fermion 
processes.
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Monte Carlo Production

• WHIZARD Monte Carlo is used to generate all 
0,2,4,6-fermion and t quark dominated 8-fermion 
processes.

• 1 ab-1 @ 0.5 TeV using ILC params has been 
generated.  Beamstrahlung and linac beam energy 
spread effects included.

• 100% electron and positron polarization is 
assumed in all event generation.  Arbitrary 
electron, positron polarization is simulated by 
properly combining data sets.

• Fully fragmented MC data sets are produced. 
PYTHIA is used for final state QED & QCD 
parton showering, fragmentation, particle decay.
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Plan for Analyis
• Perform analysis on qqbbbb channel only at Ecm=500 GeV 

assuming 0% electron polarization. Use org.lcsim Fast 
MC simulation of baseline SiD.  This MC includes a 
reasonable algorithm for smearing charged track angles, 
curvature and impact parameters.  Calorimeter simulation 
consists of  simple single neutral particle smearing with 
EM resolution for photons and HAD res for n,K0L.

• Scale single particle calorimeter resolutions to get a 
particular ΔEjet .

• Use org.lcsim ZVTOP for b-tagging
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I find wγ=28%; wh0=10%
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2 2 2 2

Drop constant term in single particle resolution for now.  Assume
negligible contribution from charged particles to 
jet energy resolution and write

where 0
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 500 GeVs =

( ) /jet rec true trueE E E EΔ = − ( ) /jet rec true trueE E E EΔ = −
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had resolution)

r =

call this the
"non-Gaussian
 parameterization"
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 500 GeVs =

( ) /jet rec true trueE E E EΔ = − ( ) /jet rec true trueE E E EΔ = −
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ZHH Preselection
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• Use udscb jets in ZHH events to train
• Perform jet analysis on charged and neutral objects 

allowing number of jets to vary; for each jet perform 
ZVTOP analysis as implemented in org.lcsim 

• Use the following variables in the btag neural net:

btagNN
btagNN

Pt-Corrected
# Secondary Vertices
# Unassociated Large Impact Parameter Tracks 

jet

vtx

vtx

vtx

E

E
M

M
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btagNN

btagNN

udsc jets

b jets

ZHH events
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Order  for 

candidate 4jets
from HH .  Reject
4jet comb if any
 jet fails min
  cut 

(red arrows)
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Note that we are effectively 
requiring that  3 of the 
4 jets recoiling against the 
Z be tagged as b-jets

ZHH qqbbbb
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( )qqM GeV

Reject Z 2jet
comb if mass
outside range
74 104GeV
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• Use signal and background events that pass preselection  to 
train

• Use the following variables in the ZHH neural net:
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• Force charged and neutral objects into 6 jets
• Loop over 45 jet-pair combinations & minimize 
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TESLA TDR Analysis Utilizes qqbbcc, qqbbgg, qqbbWW*, qqZZ*
Final States, in Addition to qqbbbb

C. Castanier et al. hep-ex/0101028

-1

( ) 0.186 fb at 500 GeV
BR(H bb)=0.678 for 120 GeV    BR(Z qq)=0.699    BR(Z ) 0.1

Before cuts 65 9   and   30 4    for 500 fb
H
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1 means one or more b-jets in system recoiling against Z
2 means two or more b-jets in system recoiling against Z

recoil
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B
B

>

>

One major difference between this analysis
and TESLA TDR is that we find that you
must require that at least 3 of the jets 
recoiling against the Z be tagged as b-jets 
in order to begin to control t t background,
given these preselection cuts.

+ - +W W  and Z  are mostly W tb 
and t t  -- i.e. t t

γ
γ
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Do we have a jet energy resolution calibration problem
when we compare different physics studies?

Is core jet energy resolution the relevant quantity for physics 
measurement error or is total r.m.s  a more important
parameter?
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 500 GeVs =

( ) /jet rec true trueE E E EΔ = − ( ) /jet rec true trueE E E EΔ = −

0.3c =

0.5c =

0.4c =

0.6c =

e e uu+ − →

 use calor E
for all chg had
=> 0.71hw =

Gaussian core with
no tail

org.lcsim Fast MC
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 500 GeVs =

( ) /jet rec true trueE E E EΔ = − ( ) /jet rec true trueE E E EΔ = −

0.3c =

0.5c =

0.4c =

90% 0.3
0.6

3central s
c

re =
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e e uu+ − →

Always use tracker
momentum for 
chrg had.

org.lcsim Fast MC
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 500 GeVs =

( ) /jet rec true trueE E E EΔ = − ( ) /jet rec true trueE E E EΔ = −
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0.8
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=

Always use tracker
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chrg had.
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Conclusions
• The coupling gHHH will be measured with an accuracy of  

30% at Ecm=500 GeV and L=2000 fb-1  in the qqbbbb 
channel assuming a jet energy resolution of 30%/sqrt(E).  
This is substantially larger than the 18% error on gHHH 
quoted in the TESLA TDR analysis under the same 
conditions of energy, luminosity, and jet energy 
resolution. The reason for this discrepancy is being  
pursued.

• The gHHH coupling error shows little dependence on the jet 
energy resolution in the range  30 to 60%/sqrt(E) 
assuming the jet energy resolution is defined by total rms. 
If the jet energy resolution is defined by the rms of the 
central 90% core then the improvement in the gHHH 
precision for 60% 30%/sqrt(E) is equivalent to a 40% 
gain in luminosity.  Either way this result does not agree 
with the dependence shown in the TESLA TDR. The 
reason for this discrepancy is also being pursued.
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