

Introduction to the ILC BCD

G. Dugan Cornell University/GDE

VLCW06 Vancouver, BC July 20th, 2006

Baseline Configuration (BCD)

- BCD developed by ILC Working Groups established at KEK ILC Workshop (2004)
 - Many working meetings during 2005
 - Discussed extensively at Snowmass ILC Workshop (2005)
 - Working groups summarized Snowmass Workshop with bulk of the BCD
 - White papers on contentious issues by GDE members in fall 2005
 - Energy upgrade; Positron source; Number of tunnels; Interaction region configuration; Laser straight versus curved or terrain following tunnels
 - Basic form ratified at Frascati GDE meeting
- BCD is not a cost-optimized design
 - BCD will evolve via a formal change control process as the cost estimates are developed
 - Evolution will also occur through the Alternate Configurations (ACD), included in the baseline document
 - The ACD are alternate technology paths which offer the possibility of cost reduction or performance enhancement, but require more R&D before they can be adopted as baseline

The ILC Accelerator

- 2nd generation electron-positron Linear Collider
- Parameter specification
 - E_{cms} adjustable from 200 500 GeV
 - Luminosity \rightarrow ∫ Ldt = 500 fb⁻¹ in 4 years
 - Ability to scan between 200 and 500 GeV
 - Energy stability and precision below 0.1%
 - Electron polarization of at least 80%
 - Options for electron-electron and γ – γ collisions
 - The machine must be upgradeable to 1 TeV
- Three big challenges: energy, luminosity, and cost

Energy and luminosity challenges

- Beam energy (E_{cm} of 500 GeV biggest portion of cost)
 - RF system and acceleration cavities accelerate the beams
- AC power efficiency
 - Efficiency of the accelerator rf system need high beam power
- Luminosity (2x10³⁴ cm⁻²s⁻¹ "only" 7000x higher than SLC)
 - Beam power (actually P_B * N) ~150x SLC
 - Requires very high density beams at collision
 - Limited by beam-beam effects and backgrounds

Cost Challenges

- Cost breakdown from US Technology Options Study
 - http://wwwproject.slac.stanford.edu/ilc/techinfo/USLCTOS/default.htm
 - Depends on costing practices (different in US, Europe, & Asia)

Experimental Basis for the ILC BCD

SLC: The 1st Linear Collider

Many Lessons Learned:

- Extensive diagnostics for troubleshooting and tuning
- Reliable and stable operation
- Well designed collimation to limit backgrounds
- Flexible design to allow parameter optimization
- Built to study the Z₀ and demonstrate linear collider feasibility
- Had all the features of a 2nd gen. LC, except both e+ and e- shared the same linac

Design flexibility: ILC Parameter Plane

- Parameter plane established
 - TESLA TDR specified luminosity at 3.4x10³⁴ but had a very narrow operating range
 - Designed for single operating point
 - ILC luminosity of 2x10³⁴ is designed to be achievable over a wide range of operating parameters
 - Bunch length between 500 and 150 um
 - Bunch charge between 2x10¹⁰ and 1x10¹⁰
 - Number of bunches between ~1000 and ~6000
 - Significant flexibility in damping ring fill patterns
 - Vary rf pulse length
 - Change linac currents
 - Beam power between ~5 and 11 MW
 - Thought to have small cost impact to be checked

Energy Upgrade Path

- Linac energy upgrade path based on empty tunnels hard to 'sell'
 - Empty tunnels obvious cost reduction
- Energy upgrade based on lower initial gradient increases capital costs
- =>Baseline has tunnels for 500 GeV cms with a linac gradient of 31.5 MV/m
- Geometry of beam delivery system adequate for 1 TeV cms
 - Require extending linac tunnels past damping rings, adding transport lines, and moving turn-around -> ~50 km site

ILC BCD Layout

Main Linac

Main features:

- Cryomodule operating gradient of 31.5 MV/m
 - Qualify cavities at 35 MV/m in vertical tests
 - ~5% overhead for variation in installed cryomodules
 - ~5% overhead for operations (1~2 MV/m below quench)
- Packing fraction ~70%
 - Based on Type-IV cryomodule
 - Shorter cavity-cavity spacing $(1.2\lambda \text{ vs } 3\lambda/2)$
 - Quadrupole in center of cryomodule
 - Design evolution from Type-III cryomodules installed in TTF
- Installed RF power capable of 35 MV/m operation
 - 9.5 mA average current
- 3% additional rf units for repair & feedback

Operating Gradient Choice

- Balance between cost per unit length of linac, the available technology, and the cryogenic costs
- Optimum is fairly flat and depends on details of technology

	Cavity type	Qualified gradient MV/m	Operational gradient MV/m	Length Km	Energy GeV
initial	TESLA	35	31.5	10.6	250
upgrade	LL	40	36.0	+9.3	500

Superconducting RF Cavities

- SC cavities are center-piece technology for the ILC
 - Extensive R&D to understand fabrication techniques, increase gradients and Q's, and reduce costs

- TESLA SC cavities are well benchmarked
 - Working to fully understand process control and yield
- New concepts (ACD) are being investigated
 - Cavity shapes to optimize electromagnetic fields
 - Alternate materials to simplify processing or operate at higher fields

TESLA Style-Cavities

Achieved Cavity Gradients at DESY

ACD-Improved Cavity Shapes and new materials

Present SC rf cavity gradients are limited by high magnetic fields

Trade magnetic for electric fields by modification of cavity

shape- single cavities ~ 50 MV/m

- Fabrication from large grain or single-crystal Nb discs:
- May remove the need for electropolishing(↓ cost!)

Cryomodule performance

RF System

Cryomodule 1 of 3

(8 Cavities per Cryomodule)

Modulators: Line AC → Pulsed DC

 Modulators create the 1.5 ms 120 kV DC pulses that drive the klystrons (switched capacitor banks)

MARX MODULATOR - MECHANICAL DETAIL

SNS Modulator

Baseline Klystron

 Multi-beam 10MW klystron for high efficiency in a cost effective package

Klystron efficiency depends on space charge

forces $\sim 1 / V^{3/2}$

Thales

CPI

Toshiba

Specification:

10MW MBK

120 kV

1.5ms pulse

65% efficiency

50,000+ MTBF Requirements have not yet been

ACD Klystron Options

10 MW Sheet Beam Klystron (SBK)

Parameters similar to 10 MW MBK but flat beam reduces space charge

5 MW Single Beam Klystron

Higher voltage and lower current for low perviance and high efficiency

5 MW Inductive Output Tube (IOT)

Peak Output Power	5	MW (min)
Average Output Power	75	kW (min)
Beam Voltage	115	kV (nom)
Beam Current	62	A (nom)
Current per Beam	5.17	A (nom)
Number of Beams	12	
Frequency	1300	MHz
1dB Bandwidth	4	MHz (min)
Gain	22	dB (min)
Efficiency	70	% (nom)

Drive

Main Linac Layout

- •Two tunnels: chosen to improve reliability and minimize surface presence
- Terrain-following

Linac Beam Dynamics

- Tolerances are comparable to those in SLC
 - 200~300 μm on the structures and 25 μm on the quadrupoles
- Structure alignment has been measured at TTF
 - Will get additional experience with new test facilities
 - Could be improved using beam-based diagnostics
- Multiple quadrupole beam-based alignment techniques
 - Quad-shunting (used in many places; FFTB demonstrated <7 μm)
 - Dispersion-Free Steering (tested on SLAC linac)
 - Ballistic alignment (tested in SLC)
 - Emittance bumps (used routinely in SLC)
- Should not prove to be an important limitation
 - Need stable magnetic centers
 - Present SC quadrupole probably will require stiffening

Linac Summary

- Extensive rf system technology development aimed at:
 - Demonstrating baseline (klystrons and cavities)
 - ACD options to improve efficiency and reduce cost (klystrons, modulator, RF distribution, and cavities)
- Two-tunnel, terrain-following layout
- Linac beam dynamics
 - Problems are relaxed compared to SLC and other sections of LC
 - Tight alignment tolerances within cryomodules
 - Beam-based alignment solutions exist
 - Instrumentation is key to understanding and diagnosing problems

Electron Source baseline

- DC polarized photocathode electron source
- Titanium-sapphire laser emits 2-ns pulses that knock out electrons from a Ga-As photocathode; electric field focuses each bunch into a 250-meter long linear accelerator that accelerates up to 5 GeV
- Two guns for improved availability

Positron Source Baseline

- Snowmass debate between conventional, undulator, & Compton
- Conventional source
 - Reduces operational coupling
- Undulator-based positron source
 - Much lower radiation environment; smaller e+ emittance for given yield; similar target and capture system to conventional
 - Easy path to polarized positrons
 - Photon production at 150 GeV electron energy
- Compton source
 - Requires large laser system and/or capture ring

Damping Ring Issues

- Damping rings have many of the most difficult accelerator physics challenges in the ILC
- Required to:

Damp beam emittances and incoming transients
Provide a stable platform for downstream systems
Have excellent availability ~99% (best of 3rd generation SRS)

- Mixed experience with SLC damping rings:
 - Referred to as the "The source of all Evil"
 - Collective instabilities, dynamic aperture and stability were all hard
- ILC damping rings have lower current than B-factories
 - More difficult feedback systems because of very small extracted beam sizes and constant re-injection (operate with small S/N)
 - More sensitive to instabilities effects amplified downstream

Collective Effects in ILC DR

- Three main issues:
 - Classical single and coupled bunch instabilities
 - Effects well known but still hard to fully predict as they can depend on details in vacuum system design
 - Ion instabilities
 - Problem in the electron ring requires gaps between trains
 - Electron cloud instability (ECI: specific to positron ring)
 - Secondary electrons from SR or scattered electrons can cascade

 RF instabilities should be easier than in B-factories because of lower currents

Damping Rings – BCD Choice

- In making the BCD choice, the DR group compared multiple lattice styles, looking at
 - Optics tuning and dynamic aperture
 - Collective instabilities (ECI, Ions, Space charge)
 - Cost

Damping ring and bunch compressor baseline

- Circular damping rings 6.6 km in circumference
 - 5 GeV ring like TESLA and USTOS
 - RF frequency of 650 MHz = ½ main linac 1.3 GHz
 - Allows for greater flexibility in bunch train format
 - Allows for larger ion and electron cloud clearing gaps
 - Shorter rings have large dynamic aperture compared to dogbone
 - Single electron ring; two rings for the positrons (to mitigate electron cloud issues)
- Dual stage bunch compressor
 - Dual stage system provides flexibility in IP bunch length
 - Allows for longer damping ring bunch length
 - Turn-around allows for feed-forward from damping ring to ease kicker tolerances
 - Pre-linac collimation system to remove beam tails at low energy

Beam Delivery System

- Baseline
 - Two BDS's, 20/2mrad, 2 detectors, 2 longitudinally separated IR halls
 - Length is determined by synchrotron radiation: $\Delta \gamma \epsilon \sim \gamma^6$
- ACD Alternative 1
 - Two BDS's, 20/2mrad, 2 detectors in single IR hall @ Z=0
- ACD Alternative 2
 - Single IR/BDS, collider hall long enough for two push-pull detectors

IR Design Issues

- Design of IR needed for both small and large crossing angles
- Pairs induced background similar in both cases
- Losses in extraction & background harder in 2 mrad
- Design optimization is ongoing – lots of work is needed
 - L*
 - Masking and collimation
 - Extraction line and dump design

Beam-Beam Force and Disruption

- Beam-beam force is a mixed blessing
 - Self-focusing increases luminosity ~ 1.7 for flat beams
 - + Luminosity enhancement observed in SLC
 - Nonlinear focusing increases outgoing beam emittances
 - Larger aperture extraction lines recapture difficult
 - Strong beam-beam forces lead to beamstrahlung → energy spread
 - + Broad luminosity spectrum and increased energy aperture in extraction line
 - Beam-beam forces amplify offsets of beams
 - + Allow for IP feedback at nm-level essential for collisions
 - Two-stream instability ("kink") can make collisions unstable
- Shorter bunches decrease disruption of opposing beam but increase EM fields and beamstrahlung
 - Optimization during operation is likely important

Operational Issues

- Integrated luminosity is the goal-baseline machine availability requirement is 75%
- Operational issues are hard to quantify
 - Beam and hardware diagnostics are crucial
 - We know that, to meet the availability spec, component MTBF must be much larger (~x10!) than in conventional accelerators
 - Design for high availability (HA) lots of experience from industry
 - Operational experience from existing accelerators hard to interpret
 - Most operating accelerators have had diagnostic electronics accessible during operation
 - TESLA TDR based on a cheaper single tunnel concept but present baseline is based on a dual tunnel configuration
 - Need to understand HA designs, develop prototype electronics hardware, and develop detailed monte-carlo with modeled tuning times

Summary

- ILC baseline configuration is well thought out
 - Based on decades of R&D
 - Technology reasonable extrapolation of the R&D status
 - Inclusion of availability and operational considerations
 - Conservative choices (for the most part) to facilitate rapid cost evaluation
- Active R&D program (baseline and ACD) to address technical and cost risks and improve the baseline
 - GDE Global R&D Board is working to coordinate the program