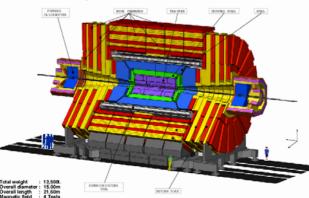
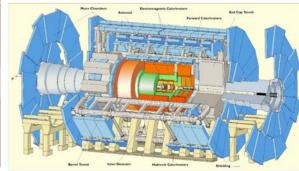
LHC Physics Landscape


What more will we know a few years from now? Possible scenarios

G. Azuelos TRIUMF/ U. Montreal



apologies for ATLAS bias...

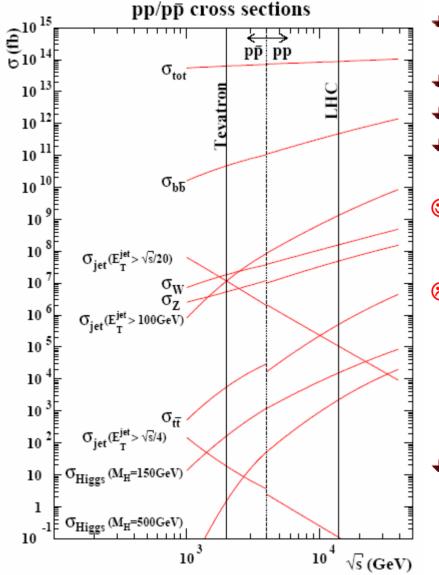
Vancouver Linear Collider Workshop

19 July 2006

Vast Physics programme

- SM Higgs
- > SUSY
 - o Higgs
 - o particle spectrum → talk by Gudrid Moortgat-Pick
- > alternatives: little Higgs, Higgless models, (strong EWSB \rightarrow talk by Tim Barklow)

gauge theories with extended symmetry


- > Z', $W' \rightarrow$ talk by Steve Godfrey
- > LR model, E6

ew precision measurements

- > top \rightarrow talk by Aurelio Juste on top couplings
- compositeness
- extra dimensions
- other topics...
- ♦ QCD
- ✤ B (LHCb), Heavy Ions (ALICE)

For an excellent review: Physics Interplay of the LHC and the ILC, G. Weiglein, ed., (hep-ph/0410364)

LHC: basic features

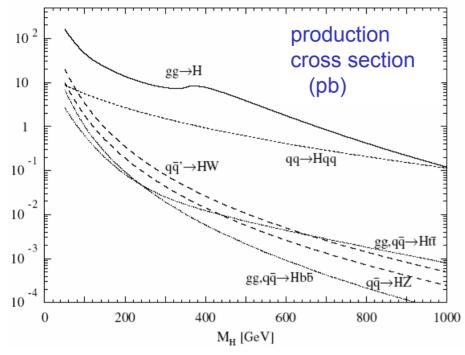
from: G. Weiglein et al., *Physics Interplay of the LHC and the ILC*, hep-ph/0410364

19 July 2006

- **p p collider**, $\sqrt{s} = 14$ TeV
 - (also heavy ions)
- startup: 2007-2008
- nominal luminosity: 10³⁴ cm⁻² s⁻¹
- bunch crossing: every 25 ns

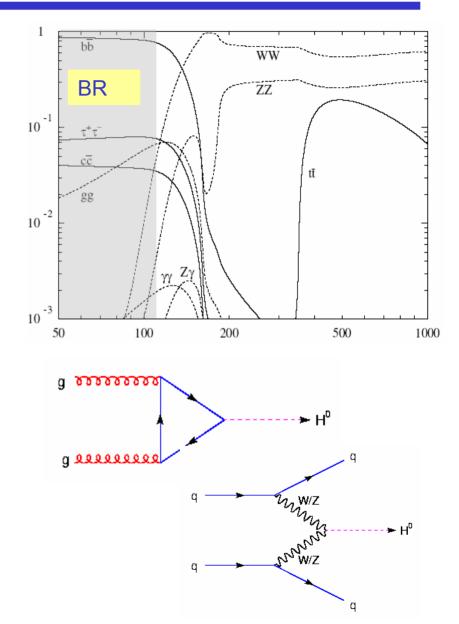
bigh energy:

> parton collisions spanning up to $\sqrt{\hat{s}} \sim 7$ TeV (gg collisions)

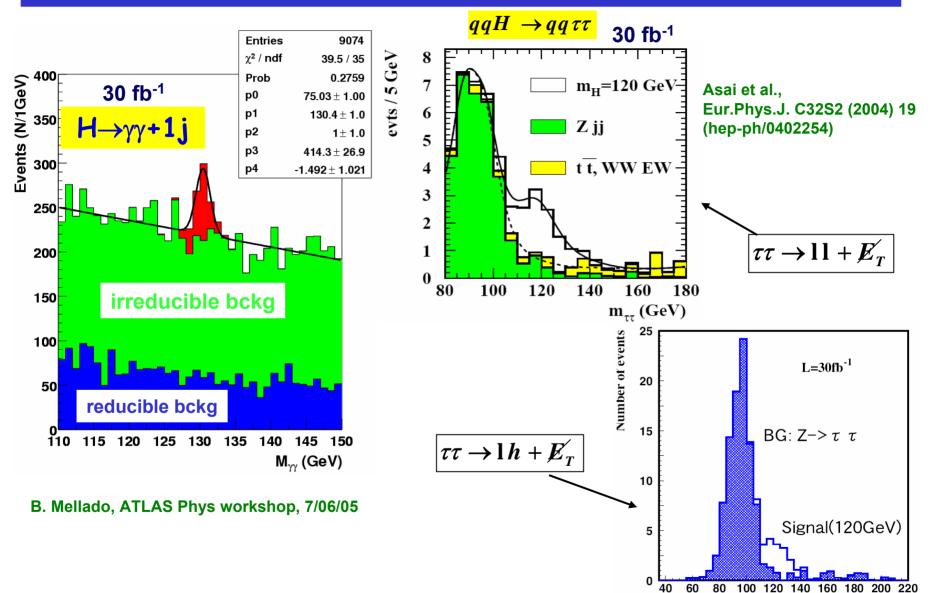

8 very high QCD cross section

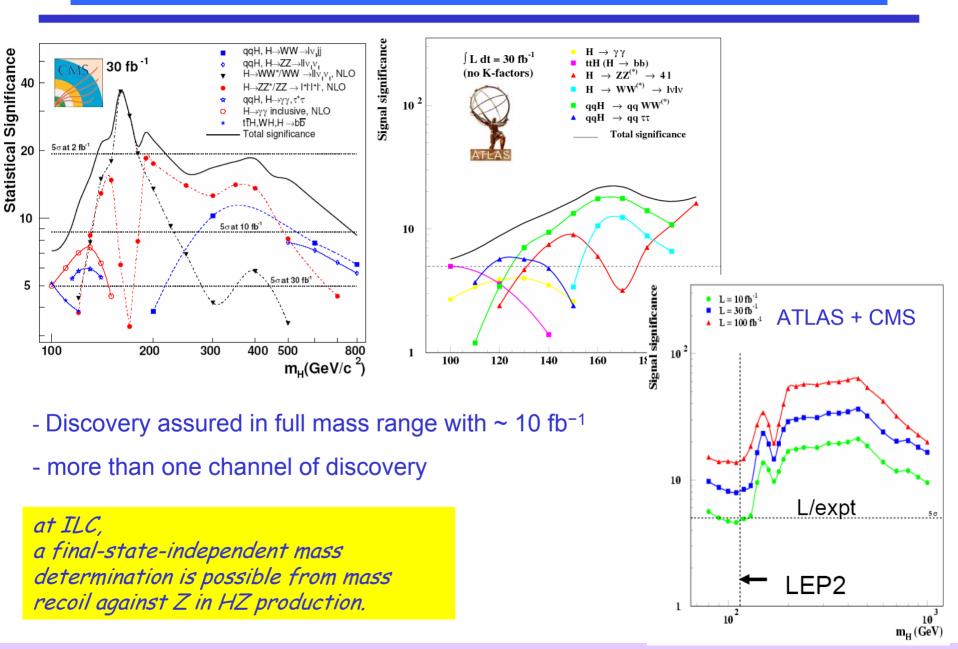
- > NLO corrections important
- pileup: ~ 20 min. bias events/bunch crossing
 - resolution effects and backgrounds
- overwhelming background for ew processes
 good particle ID crucial

ILC:


- ⊗ lower energy, fixed cm energy but
- © precision measurements, with clean events, known cm energy, luminosity, and polarization

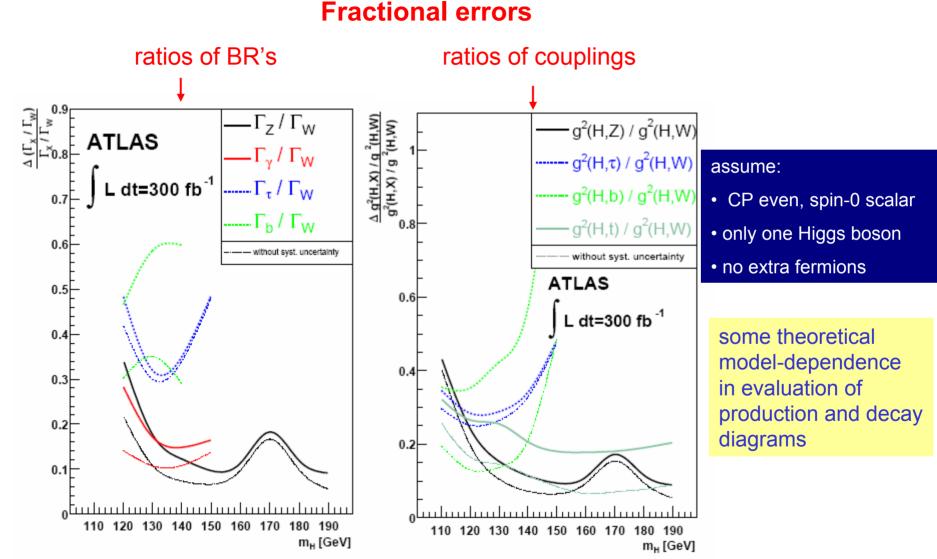
EWSB: Standard Model Scenario




- QCD background limits study of H decay channels
- need to measure properties: mass, gauge and Yukawa couplings, spin, CP quantum number, self-couplings

EWSB: Standard Model Scenario: light Higgs

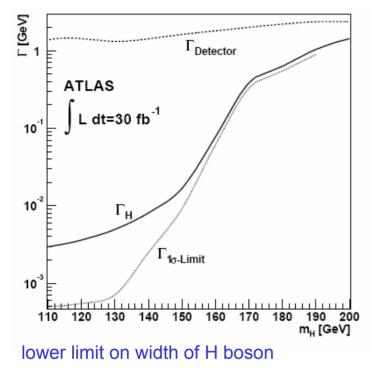
EWSB: Standard Model Scenario



19 July 2006

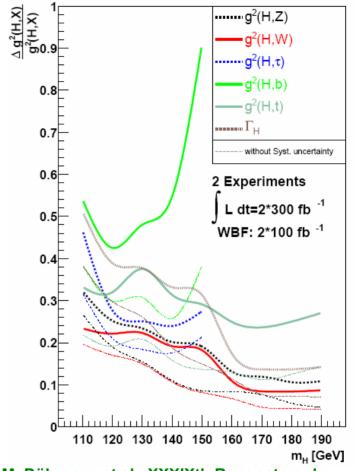
Vancouver Linear Collider Workshop

6


EWSB: – Is this the SM Higgs ??

from a compilation of various ATLAS studies, M. Dührssen, ATL-PHYS-2003-030

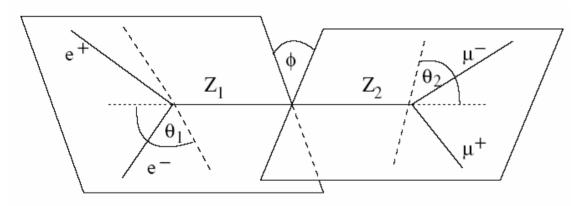
19 July 2006


Absolute couplings

(from sum of all detectable decays)

M. Dührssen ATL-PHYS-2003-030

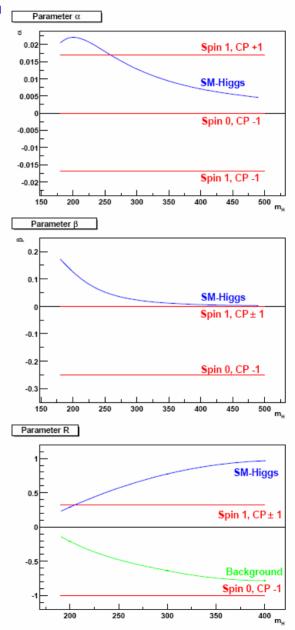
at ILC, much higher precision attainable (top-Yukawa requires high energy)

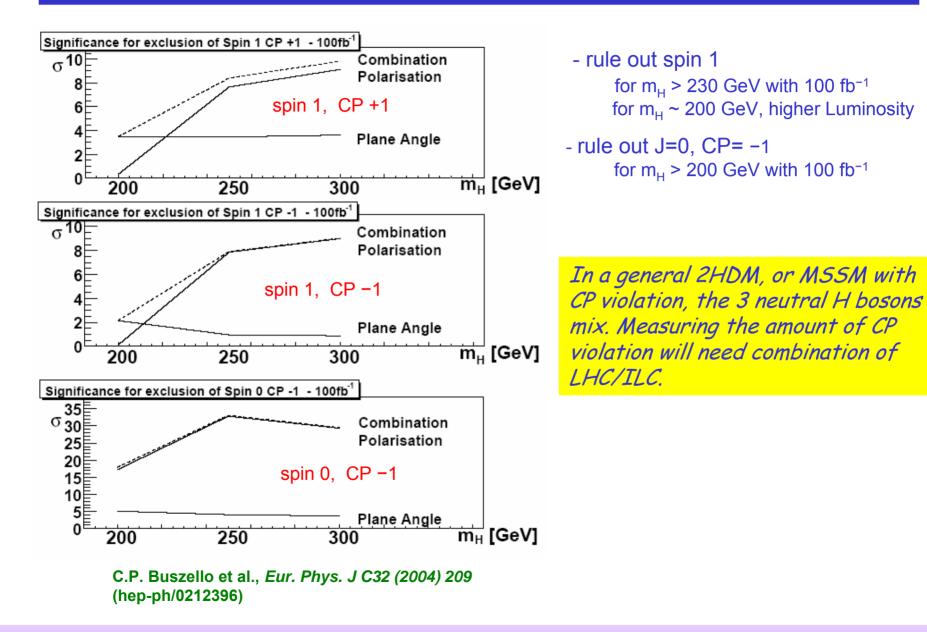

M. Dührssen et al., XXXIXth Rencontres de Moriond, La Thuile, March 2004 (hep-ph/0407190)

assumes gauge boson couplings not larger than in SM (valid for generic 2HDM)

Spin and CP Eigenstate

- production vertex not measurable gg fusion rules out spin 1 (Yang's theorem)
- decay vertex: decay to resonance pair necessary to measure CP

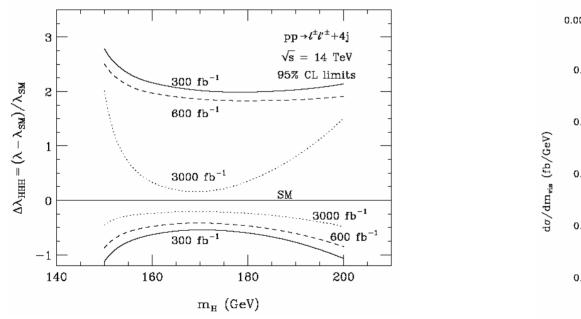

For $m_H > 2m_Z$:

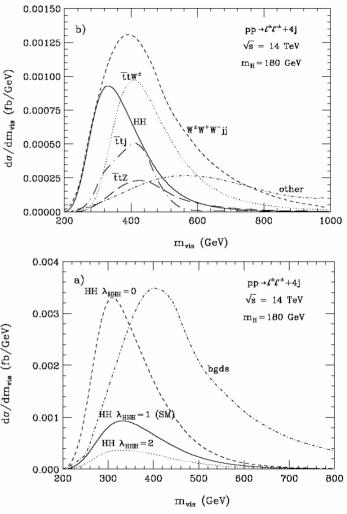

$$F(\phi) = 1 + \alpha \cos(\phi) + \beta \cos(2\phi)$$
$$G(\theta) = T(1 + \cos^2 \theta) + L \sin^2 \theta$$
$$R = \frac{L - T}{-T}$$

$$R = \frac{1}{L+T}$$

C.P. Buszello et al., Eur. Phys. J C32 (2004) 209 (hep-ph/0212396)

Spin and CP Eigenstate


¹⁹ July 2006

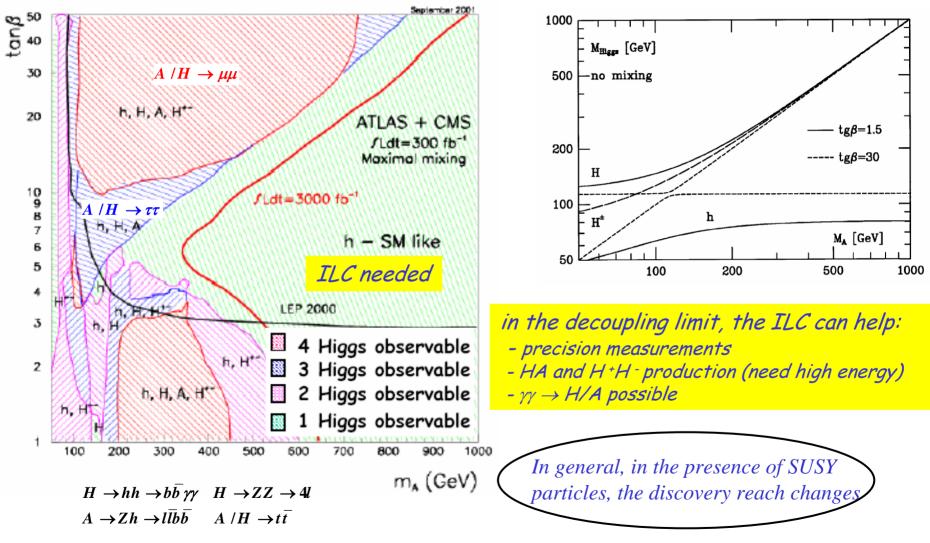

Higgs self-coupling

Higgs self-coupling is a crucial ingredient of the SM

Higgs potential:
$$V(\phi) = -\mu^2 (\phi^{\dagger} \phi) - \lambda (\phi^{\dagger} \phi)^2$$

 $\downarrow \mu^2 = -\lambda v^2 = -m_H^2/2$

 cross section for Higgs pair production at LHC very low, and backgrounds important, but some limits can be set



at ILC (1 TeV), higher precision for $m_{H} < 140$ GeV (bb bb channel at ILC, $\gamma\gamma$ bb at LHC). Precision Higgs properties important for LHC measurement at higher mass (top Yukawa, HWW coupling, total width...) \rightarrow see talk by T. Barklow

U. Baur, T. Plenh and D. Rainwater, Phys.Rev. D67 (2003) 033003; and LHC/ILC study

EWSB: MSSM scenario

✤ 5 Higgs bosons, two parameters:

Other EWSB scenarios

NMSSM

- $\succ\,$ extend MSSM by adding one singlet superfield \rightarrow new h_3 and A_2
 - LHC: $WW \rightarrow h \rightarrow aa \rightarrow bb \tau \tau$
 - ILC : also $Z h \rightarrow Z aa$; $a \rightarrow bb$ or $\tau \tau$, \rightarrow talk by J. Gunion

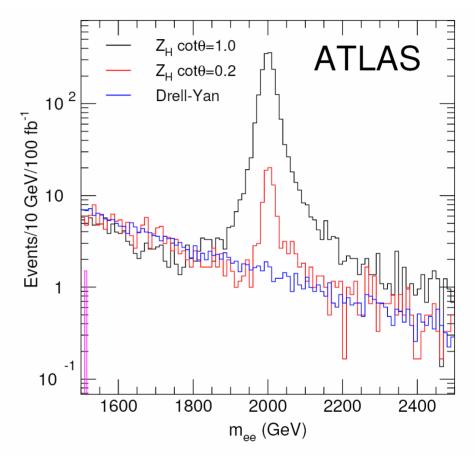
invisible channel

difficult at LHC (VBF), but easier at ILC (Zh)

radion (or other scalars)

- scalar state in Randall-Sundrum extra-dimension model
 - o mixes with SM Higgs, can decay to hh
 - o some channels of discovery at LHC,

$$\phi \rightarrow hh \rightarrow \gamma\gamma b\overline{b}, \tau\tau b\overline{b}; \phi \rightarrow ZZ^{(*)} \rightarrow 4l$$

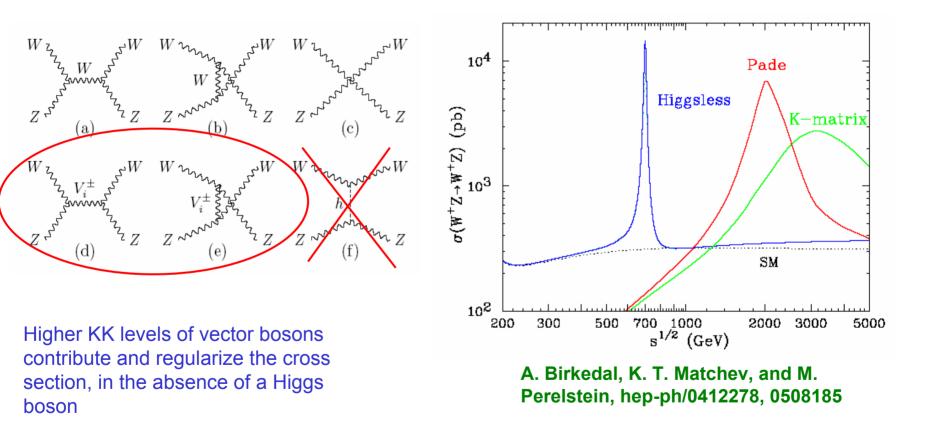

but distinguishing from MSSM Higgs difficult in some mass regions

fermiophobic Higgs

- > if mass originates from other mechanism...
 - use γγ production at ILC

little Higgs model

- Higgs is naturally light (pseudo Goldstone boson from breaking of higher symmetry)
- new states from higher symmetry (and isosinglet top) cancel quadratic divergences from radiative corrections
- LHC: discovery possible of new states in large part of parameter space
- with T-parity: missing energy signal could fake SUSY
- ILC: sensitive to presence of new particles in loops (TGC, *h γγ*,...)

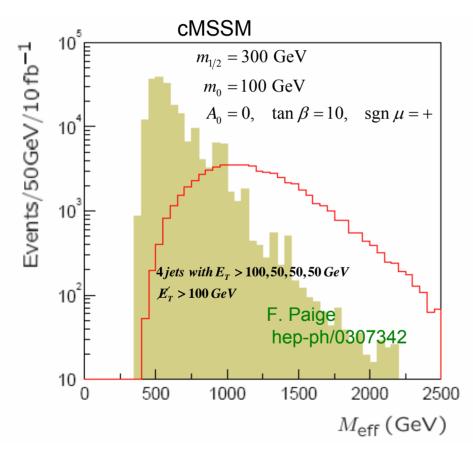


SN-ATLAS-2004-038

Higgsless model

EWSB from boundary conditions between branes in warped 5th dimension

C. Csaki, et al., Phys. Rev. D 69, 055006 (2004) [hep-ph/0305237


LHC: How to distinguish from technicolor (QCD-like) resonance? need to see more KK states, but insufficient energy...

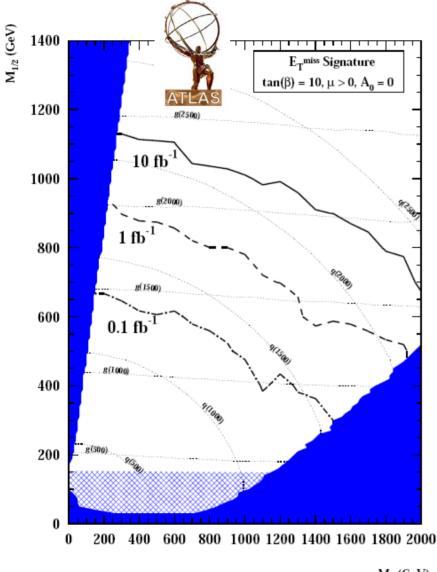
19 July 2006

Supersymmetry

- Inclusive signal with jets (R-conservation)

 - > main background: SUSY

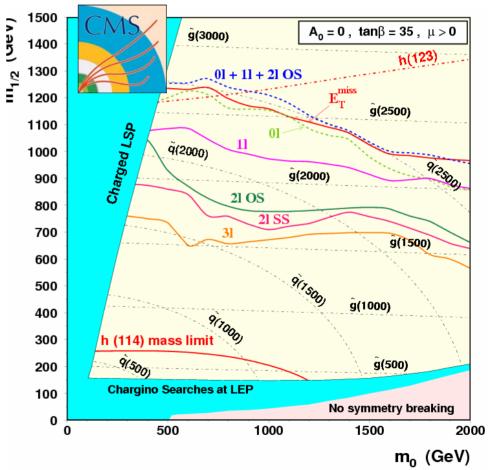
 $\mathcal{Y} \to K$ cascade $\rightarrow \mathcal{Y}_{1^{\circ}}^{\circ} \mathcal{X}_{1^{\circ}}^{\circ} + jets + leptons$


 $M_{eff} \equiv \sum_{jets} E_T^{jets} + E_T : \text{good measure of } M_{SUSY}$ (linear relation)

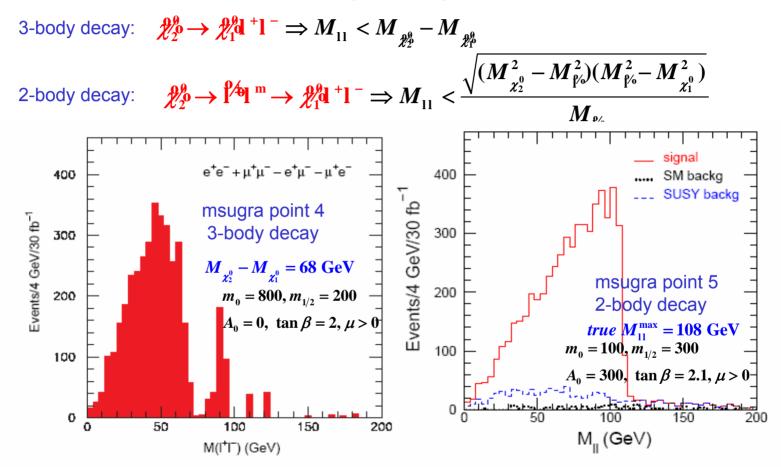
 \Rightarrow preselect SUSY-rich sample

note:

background $(t\bar{t}, W + j, Z + j, QCD)$ increases by factor 2-4 with multi-parton (ME-PS) generators


SUSY - inclusive search

 M_0 (GeV)

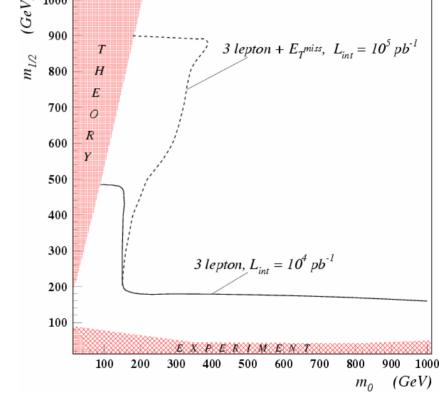

LHC reach, 100 fb⁻¹, various signals:

CMS Note 1998/073

19 July 2006

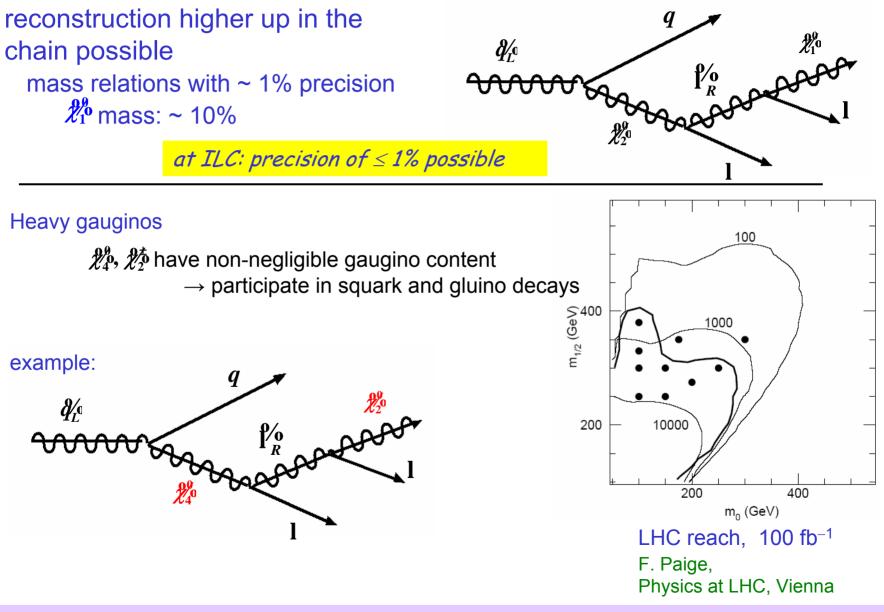
Mass reconstruction from di-lepton endpoints

SM background removed by subtracting distributions with opposite flavor leptons precision in end-point measurement: ~ 1-2 %


example of SPS1a point fully studied in LHC/ILC report:

Inclusive signal from di-lepton endpoint

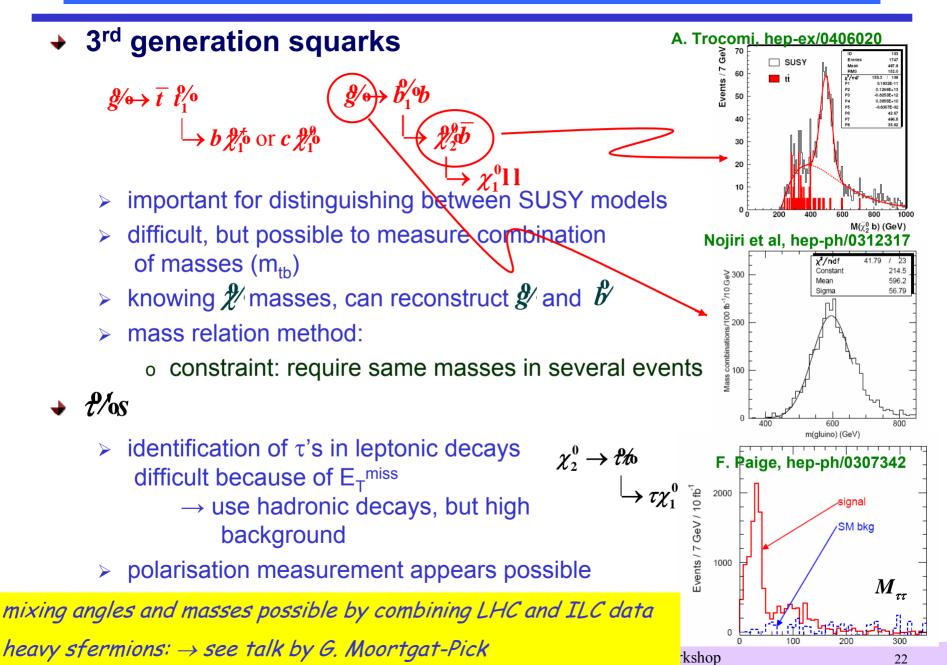
2 leptons + E_T^{miss} + jets 900 (GeV)1000 800 900 $m_{1/2}$ 700 $tan\beta = 2, A_0 = 0,$ 800 ΤH μ < 0 $\tilde{\chi}^{0}_{2} \rightarrow \tilde{\ell}_{L} \ell$ 600 700 10⁵ pb⁻¹ m_{1/2} (GeV) 600 500 $\tilde{\chi}_2^0 \rightarrow \tilde{\ell}_R \ell$ 500 400 400 300 300 200 $\tilde{\chi}_{2}^{0} \rightarrow \ell^{+} \ell^{-} \tilde{\chi}_{1}^{0}$ 200 100 D_D_1063n LEP2 + Tevatron (sparticle searches) 100 TH EΧ 50 100 150 250 300 350 400 500 0 200 450 m_0 (GeV)


Direct $\mathscr{X}_1^* \mathscr{X}_2^*$ production $\rightarrow 1 \mathscr{V}_0 1 \mathscr{X}_1^*$

mSUGRA parameters: $tan\beta=2$, $A_0=0$, $\mu<0$

CMS

Supersymmetry

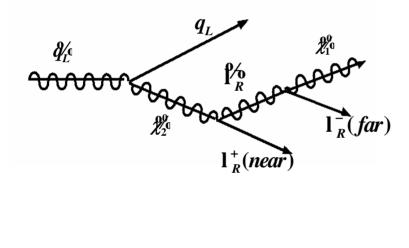

SUSY masses and parameters

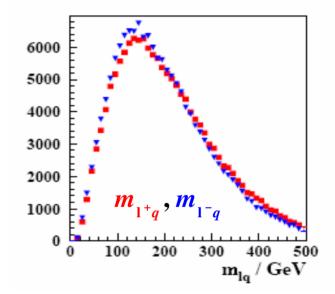
	LHC	LHC+LC				800						
$\Delta m_{\tilde{\chi}_1^0}$	4.8	0.05 (LC input)			m [0		∍V]			SPS 1a		
$\Delta m_{\tilde{\chi}_2^0}^{\chi_1}$	4.7	0.08	,			700	-					
$\Delta m_{\tilde{\chi}_4^0}^{\chi_2}$	5.1	2.23										
$\Delta m_{\tilde{l}_R}^{\chi_4}$	4.8	0.05 (LC inp	out)			600	-			ĝ	Ĩ Ĩ2	
$\Delta m_{\tilde{\ell}_L}^{\ell_R}$	5.0	0.2 (LC inp								$\tilde{u}_L, \tilde{d}_R, \tilde{d}$	\tilde{b}_2	
$\Delta m_{\tau_1}^{\circ L}$	5-8	0.3 (LC inp	ut)			500	-			n,	<i>b</i> ₁	
$\Delta m_{\tilde{q}_L}$	8.7	4.9				10.0	· · · · · · · · · · · · · · · · · · ·					
$\Delta m_{\tilde{q}_R}$	7-12	5-11				400	$-H^0, A^0 - H^{\pm}$		$\tilde{\chi}^0_{a}$	$\tilde{\chi}_2^{\pm}$	\tilde{t}_1	
$\Delta m_{\tilde{b}_1}$	7.5	5.7				300			123			
$\Delta m_{\tilde{b}_2}$	7.9	6.2				300	-					
$\Delta m_{\tilde{g}}$	8.0	6.5				200	_	$\tilde{l}_L = \tilde{\tau}_2$				
L	HC (0	5% jet scale)	LHC (0	.5% jet scale	+ 1C			ν _l	$\tilde{\chi}_{2}^{0}$	$\tilde{\chi}_1^{\pm}$		
$\Delta m_{\tilde{q}_L}$	110 (0.	7.8		2.6) + <u>L</u> C	100	h^{0}	τ ₁	$\tilde{\chi}_1^0$			
$\Delta m_{\tilde{b}_1}$		6.0		3.7								
$\Delta m_{\tilde{b}_2}^{o_1}$		6.4		4.3		0						
$\Delta m_{\tilde{g}}^{o_2}$		6.0		3.7						SPS la	:	
							1	Т		$m_{0} = 1$	00 GeV,	
M	SUSY Parameters				Mass Predictions				v			
M_1	1 102	M2	$\frac{\mu}{1+2.1}$	$\tan\beta$	$m_{\tilde{\chi}_2}$	é	$m_{\tilde{\chi}_3^0}$	+		$m_{\frac{1}{2}} = 2$	250 GeV,	
$99.1 \pm 0.$	1 192	2.7 ± 0.3 352.	$.4 \pm 2.1$	10.2 ± 0.6	378.5 ±	: 2.0	358.8 ± 2.1			$A_0 = -1$	100 GeV,	
Table 5.23:	Table 5.23: SUSY parameters with 1σ errors derived from the combined analysis of the LHC and LC							-				
Table 5.23: SUSY parameters with 1 σ errors derived from the combined analysis of the LHC and LC data with $\delta m_{\tilde{\chi}_1^0} = 0.08$ GeV and $\delta m_{\tilde{\chi}_1^0} = 2.23$ GeV derived from the LHC when using the LC input $\tan \beta = 10, \ \mu > 0$												
of $\delta m_{\tilde{\chi}_1^0} = 0.05$ GeV.												

from LHC/ILC report

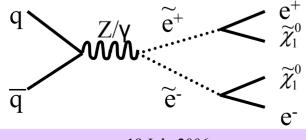
19 July 2006

Supersymmetry




Supersymmetry – other topics

Spin measurements


A.J. Barr, hep-ph/0405052

evidence for supersymmetry (vs extra dimensions, for example) polarization of X₂⁰ induces asymmetry seems feasible, with 150 fb⁻¹, but very difficult

> slepton spin can be measured from angular distribution: $1 - \cos^2 \theta$ for SUSY

19 July 2006

polarization measurements with ILC and threshold measurements

A. Barr, ATLAS presentaiton, Oct.2005

Supersymmetry – other topics

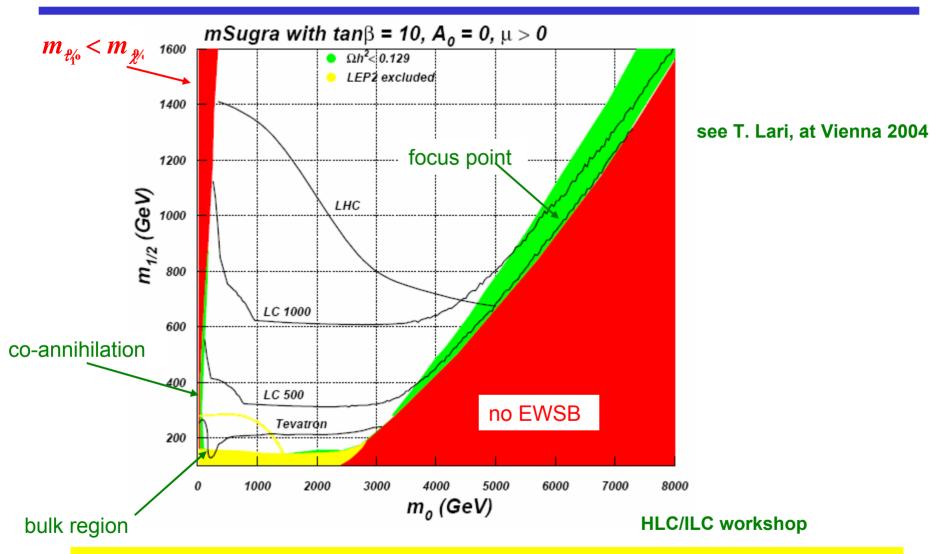
GMSB

- > $LSP: \mathcal{C}, NLSP: \mathcal{D} or \mathcal{V}(\mathcal{C}_{R})$
- > jets + E_t^{miss} : ~ similar reach as MSugra
- > signatures:

- Kawagoe, Vienna 2004
- o 2^{n} → 3^{n} + 1⁻ for short lifetimes, or o 2^{n} → 3^{n} : non-pointing photons for long lifetimes
- \circ ^ℓ/_≈ slow "muon" \Rightarrow TOF measurements
- $f' \rightarrow I \chi_1^0 \rightarrow I \gamma G'$: non-pointing photons

ILC: help discriminate between scenarios extrapolation to GUT scale

AMSB

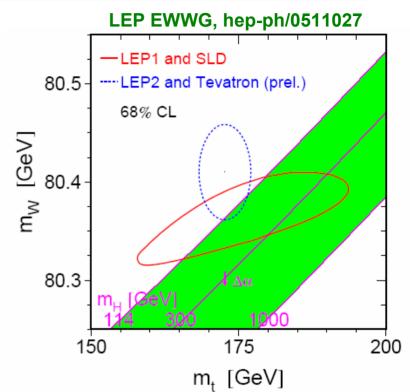

- > 17 pairs:

Generic SUSY search by statistical method

Duchovni, SN-ATLAS-2004-043

- R-parity violating processes
- Split Supersymmetry
 - \succ heavy, stable gluino \rightarrow R-hadron
- LFV (τ μ sector)

SUSY vs WMAP (and PLANCK)

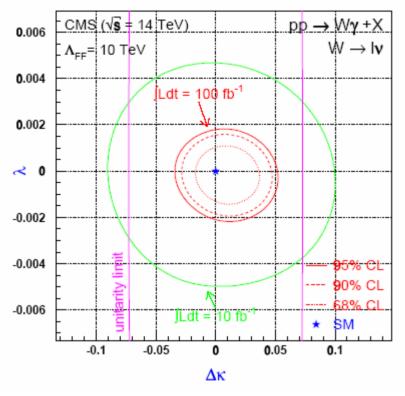


ILC: High precision measurement necessary to match experimental predictions from WMAP and PLANCK, assuming cosmological model

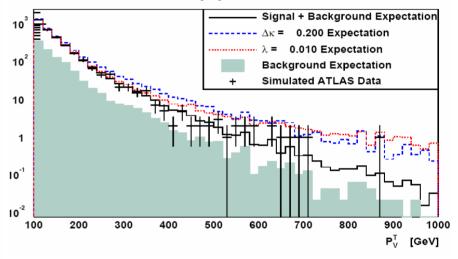
Electroweak

precision mass measurements:

- *m_W*: use Z → *ee* as a reference for an accurate measure of the em energy scale (N. Besson, M. Boonekamp, ATL-PHYS-2006-007) ⇒ syst. uncertainty of 4 MeV
- *m_t*: from ttbar; various decay channels investigated. di-lepton channel clean, but more than one solution and MC weights required
- > V_{tb} from single top measurement

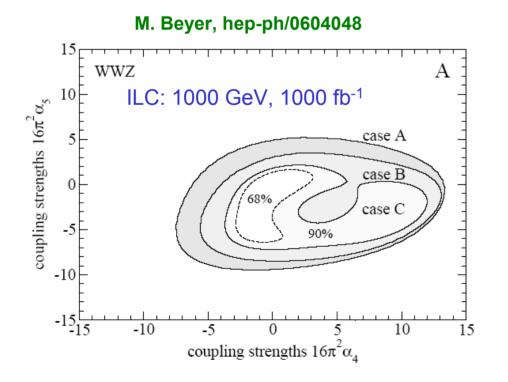


LHC/ILC report (Table 6.5)


	now	Tev. Run IIA	Run IIB	LHC	LC	GigaZ
$\delta \sin^2 \theta_{\rm eff} (\times 10^5)$	17	78	29	14–20	(6)	1.3
δM_W [MeV]	34	27	16	15	10	7
δm_t [GeV]	5.1	2.7	1.4	1.0	0.2–0.1	0.1
$\delta m_h [{ m MeV}]$			$\mathcal{O}(2000)$	200	50	50

19 July 2006

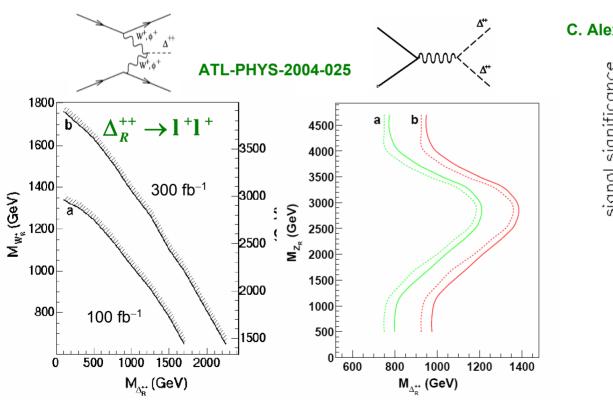
S. Haywood, CERN 2000-004

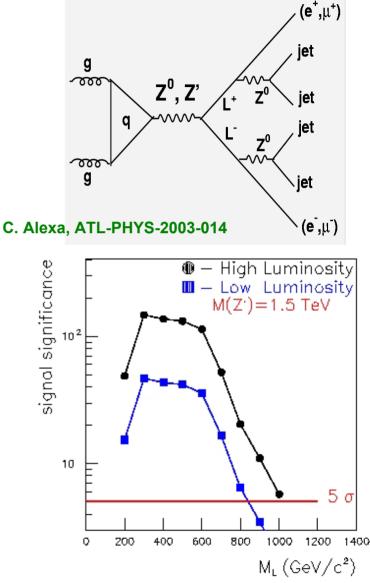

M. Dobbs, hep-ph/0506174

ILC: considerable improvement for all parameters: $\Delta \kappa_r, \Delta \lambda_r, \Delta \kappa_z, \Delta \lambda_z, \Delta g_z$ (LHC/ILC report, Sect. 6.2) high mass vector boson scattering.

at LHC: c.m. energy sufficient to explore resonances (unitarization procedure)

 \rightarrow see talk by T. Barklow

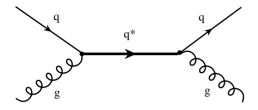



\mathcal{L}_4	=	$\alpha_4 \left[\operatorname{Tr} \left(V_{\mu} V_{\nu} \right) \right]^2 \;,$
\mathcal{L}_5	=	$\alpha_5 \left[\text{Tr} \left(V_{\mu} V^{\mu} \right) \right]^2 \;,$
\mathcal{L}_6	=	$\alpha_6 \operatorname{Tr} \left(V_\mu V_\nu \right) \operatorname{Tr} \left(T V^\mu \right) \operatorname{Tr} \left(T V^\nu \right)$
\mathcal{L}_7	=	$\alpha_7 \operatorname{Tr} \left(V_{\mu} V^{\mu} \right) \left[\operatorname{Tr} \left(T V^{\nu} \right) \right]^2 ,$
\mathcal{L}_{10}	=	$\frac{\alpha_{10}}{2} \left[\operatorname{Tr} \left(T V_{\mu} \right) \ \operatorname{Tr} \left(T V_{\nu} \right) \right]^2 .$

Gauge theories with Extended symmetries

E6 and other grand unified theories

- include LR symmetric model
 - o Z', W'
 - o heavy leptons, Majorana neutrino
 - o triplet Higgs (H++)



19 July 2006

Vancouver Linear Collider Workshop

Excited quarks and leptons

$$L = \frac{1}{2\Lambda} \overline{q}_R^* \sigma^{\mu\nu} \left(g_s f_s G_{\mu\nu}^a + g f \frac{\tau}{2} W_{\mu\nu} + g' f' \frac{Y}{2} B_{\mu\nu} \right) q_L + h.c.$$

take as reference : $\Lambda = m^*$, $f_s = f = f' = 1$

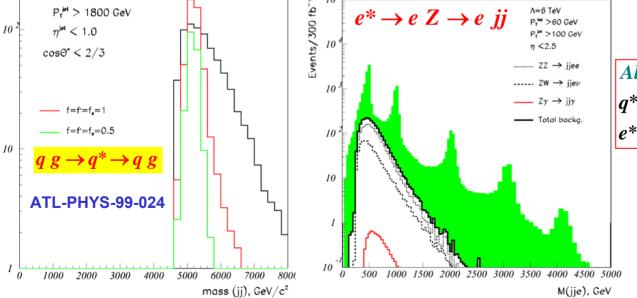
O. Çakir, C. Leroy, R. Mehdiyev, ATL-PHYS-2002-014

contact in

 $P_T^{jet} > 1800 \text{ GeV}$

Events/200 GeV

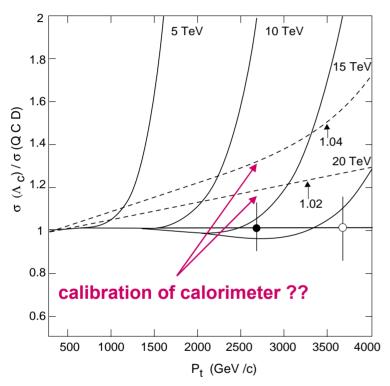
$$e^{e}$$
 e^{*} e^{*} e^{*} e^{*} q^{*}


nteraction :
$$L_C = \frac{g_*^2}{2\Lambda^2} J_{\mu} J^{\mu}$$

Also:

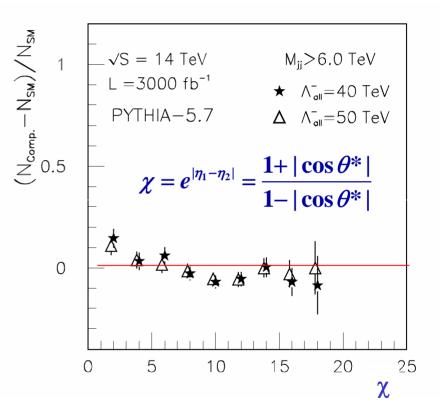
$$q^* \rightarrow q\gamma; \quad q^* \rightarrow qZ; \quad q^* \rightarrow \overline{q}'W$$

 $e^* \rightarrow e\gamma$


clean signals up to few TeV, depending on Λ

10

19 July 2006


Contact interactions: scale of compositeness $\Lambda >> m^*$

di-jets, relative to SM QCD, from TP

extraD signal?

- virtual G exchange,
- virtual g* exchange in UED?
- early gauge coupling unification?

angular distribution less dependent on calibration

Z. Usubov

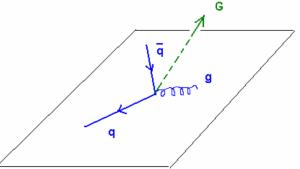
(from superLHC)

Extra dimensions

ADD: Large, flat compactified extra dimensions

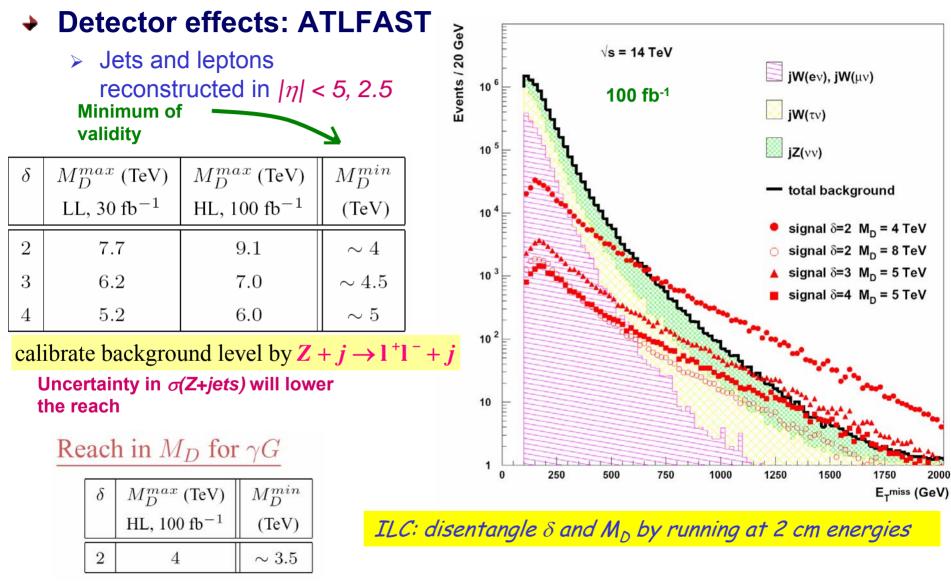
- Gauss' law:
- > SM particles on 3-brane

$$G_{N} \frac{m_{1}m_{2}}{r^{2}} = G' \frac{m_{1}m_{2}}{r^{2}(2\pi r)^{n}}, \text{ for } r = R \implies G' = G_{N}(2\pi R)^{n}$$
$$M_{D}^{2+n} = \frac{M_{Pl}^{2}}{8\pi(2\pi R)^{n}} \implies M_{D} : \text{TeV for values of } R \le \text{mm}$$


for compactification in circles: graviton field periodic in extra dimensions (y)

$$\phi(x, y) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} \dots \sum_{k_n = -\infty}^{\infty} \phi^{(k)}(x) e^{i \frac{r}{k} \cdot \frac{r}{y}/R}$$

towers of Kaluza-Klein states of graviton
with $p_T \sim mass = k/R$


KK mode separation is very small: \rightarrow continuous spectrum \rightarrow high density of states compensates low coupling (~1/M_{Pl}) \rightarrow chance to observe effects at LHC

at LHC:

$$\left. \begin{array}{c} \overline{q}q \rightarrow gG^{(k)}, \gamma G^{(k)} \\ qg \rightarrow qG^{(k)} \\ gg \rightarrow gG^{(k)} \end{array} \right\} \text{ jets } + E_T, \ \gamma + E_T \end{array}$$

Direct graviton production: Jets + missing E_T

L. Vacavant and I. Hinchliffe, J. Phys. G: Nucl. Part. Phys. 27 (2001) 1839

19 July 2006

Virtual Graviton Exchange

- → Signals: $q\overline{q}, gg \rightarrow \gamma\gamma, \Pi$, $(WW, t\overline{t}...)$
 - > We require that : $M_{\gamma\gamma,11} < 0.9 M_s$ (effective theory)
 - Excess in di-leptons mass distribution (same for di-photons)
 - > event distribution of $\gamma\gamma$ (s-channel) more central than in SM (t and u channels)
 - can measure FB asymmetry

10

10²

10

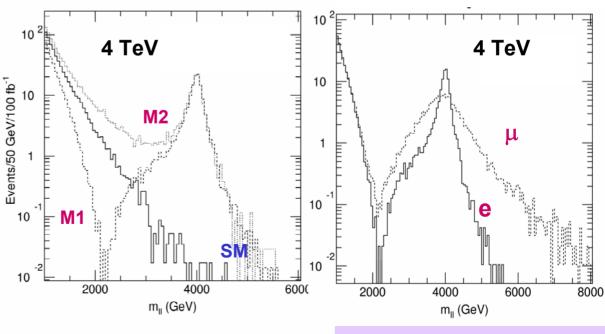
1000

19 July 2006

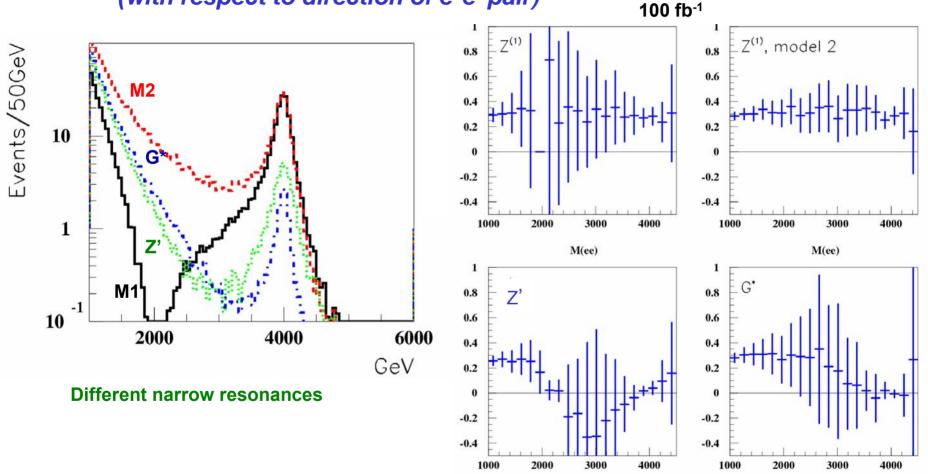

G. A. and G. Polesello Proceedings of Les Houches 2001

 Compactification radius is small enough to allow SM particles in the bulk

note: $R = hc/1 \text{ TeV}^{-1} = 2 \times 10^{-4} \text{ fm} [M_p: 10^{15} \text{ GeV for } n=1]$


- indirect constraints from LEP EW measurements:
 - limits from gauge boson couplings, mixings and virtual exchanges
 - o $R^{-1} \ge 3.3 6.8 \text{ TeV}$ K. Cheung and G. Landsberg, Phys.Rev. D65 (2002) 076003 (*hep-ph/0110346*)

Z/γ excitation:


resonance observable up to ~ 5.8 TeV with 100 fb⁻¹

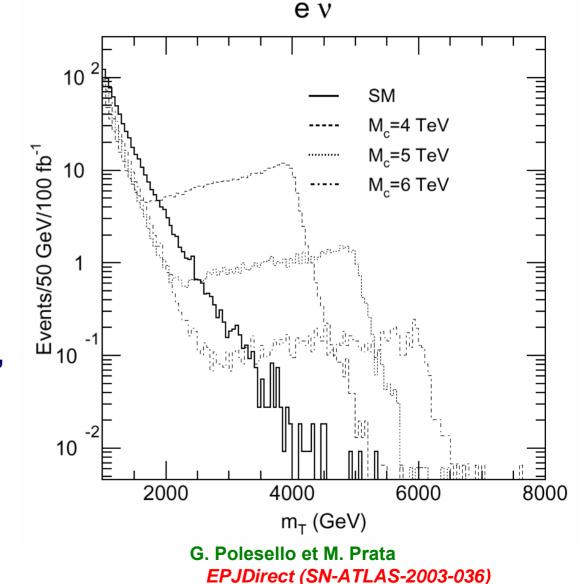
sensitivity to DY tail up to 13.5 TeV (e-µ) combined

Extra dimensions of ~TeV⁻¹ size: Z/γ excitation

 angular distribution and FB asymmetry (with respect to direction of e⁺e⁻ pair)

ILC: precision measurements of FB asymmetry and DY help discriminate between models

19 July 2006


Extra dimensions of ~TeV⁻¹ size: W excitation

Same for W⁽¹⁾

 direct observation up to 6 TeV

indirect up to ~ 9 TeV

 more difficult to distinguish from a W'

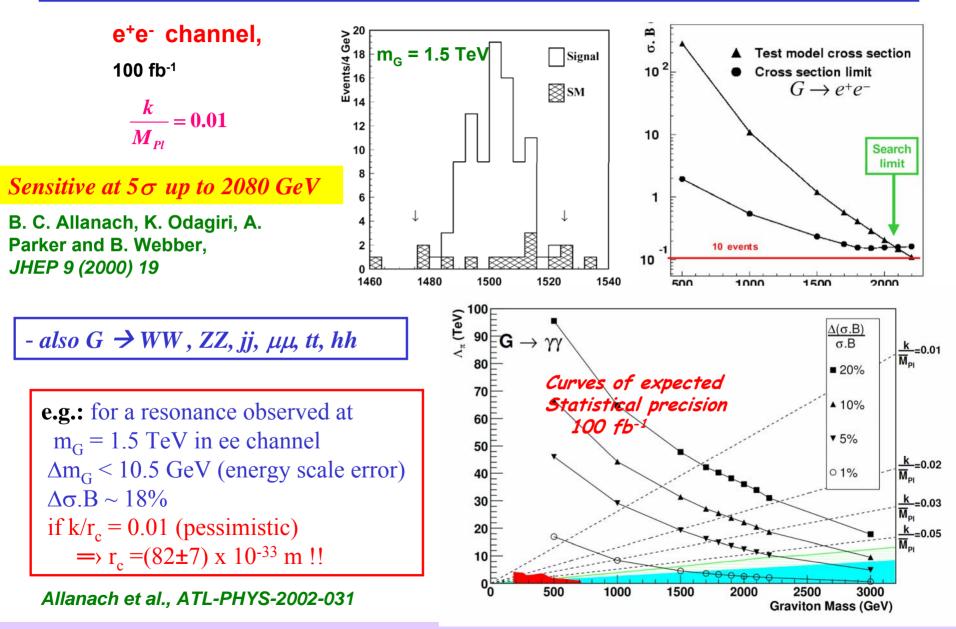
19 July 2006

L. Randall and R. Sundrum, Phys.Rev.Lett. 83 (1999) 3370 (hep-ph/9905221)

1 extra dimension y with non-factorizable metric

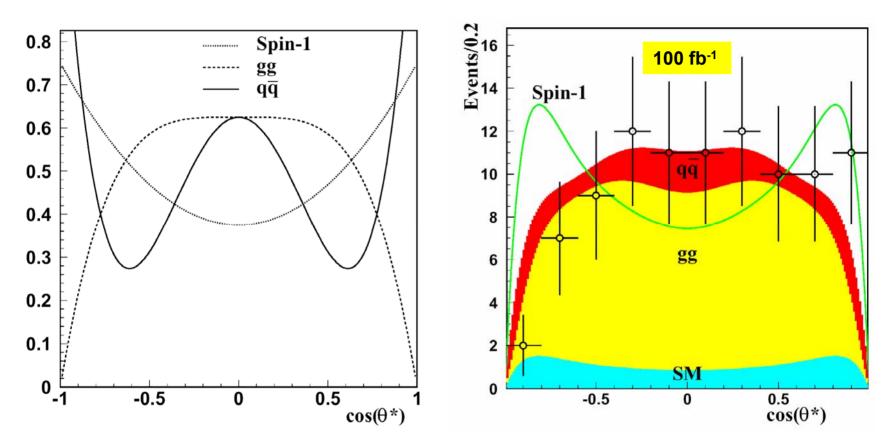
- > 5D space, bounded by 2 branes
 - SM brane (TeV) at y = π r_c
 - Planck brane at y =0

 $ds^2 = e^{-2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2$, $y = r_c \phi$, $(k \sim M_{Pl}) \Rightarrow 3D$ distances shrink with y


- > 5-D Planck scale $M_5 \sim M_{Pl}$: $M_{Pl}^2 = \frac{M_5^3}{k} (1 e^{-2kr_c \pi})$ curvature scalar $|R_5| = 20k^2$
- > new physics scale at SM brane = $\Lambda_{\pi} = M_{pl}e^{-kr_c\pi}$; $kr_c\pi$: 35 $\Rightarrow \Lambda_{\pi}$: TeV o coupling of KK states ~ $1/\Lambda_{\pi}$
- KK masses:

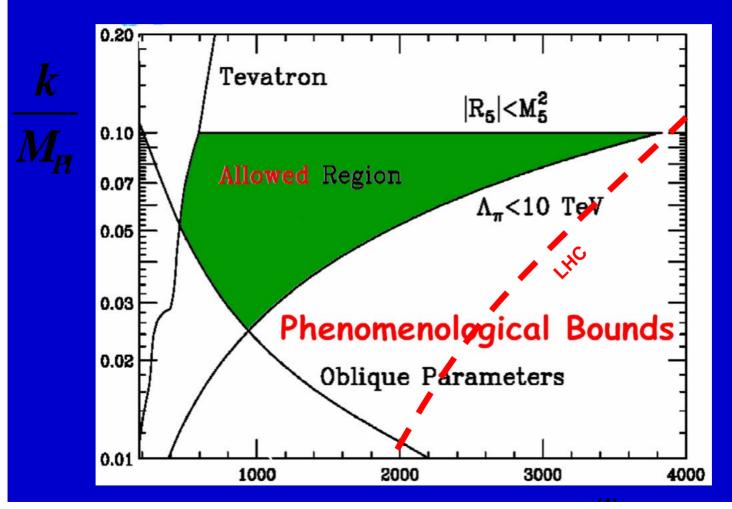
•
$$m_n = kx_n e^{-k\pi r_c}$$
, with $J_1(x_n) = 0 \implies m_1 = 3.83 \frac{k}{M_{Pl}} \Lambda_{\pi}$
3 parameters: k, r_c, Λ_{π}
(2 independent) $constraints: 0.01 \le \frac{k}{M_{Pl}} \le 0.1$

Note: astrophysical bounds not applicable in this model


19	Inly	2006
12	July	2000

Narrow graviton resonance

19 July 2006

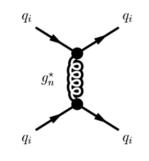

Spin determination

spin-2 could be determined (spin-1 ruled out) with 90% CL up to graviton mass of 1720 GeV

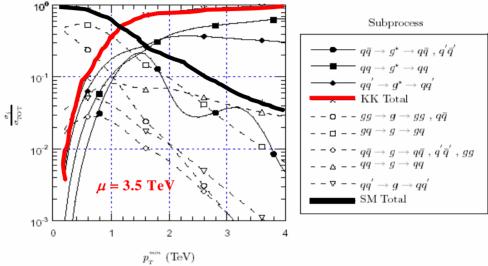
Narrow Graviton Resonance

Interesting region covered by LHC

H. Davoudiasl, J. Hewett and T. Rizzo, Phys.Rev. D63 (2001) 075004 (hep-ph/0006041)


19 July 2006

Other models and ideas...


→ TeV⁻¹-size:

DA Dicus, CD McMullen and S. Nandi hep-ph/0012259

 \succ virtual g* excitation \Rightarrow enhanced di-jet cross section

ATLAS study in progress...

Universal Extra dimensions

T. Appelquist, HC Cheng and BA Dobrescu, PR D64 (2001) 035002

- > All SM particles in bulk
 - \Rightarrow conservation of momentum in extra dimensions
 - \Rightarrow conservation of KK number
 - \Rightarrow pair production of KK states
 - \Rightarrow lower collider bounds: ~ 350-400 GeV

19 July 2006

Universal Extra Dimensions

stable dijets :

100 events

1.5

10

10°

10

10⁻²

10⁻³

10-4

- > dijet signals
 - o stable
 - unstable: fat brane absorbs unbalanced momentum from KK number violation

 $q_1^{\bullet}q_1^{\bullet} \to (\dots + \gamma^*)(\dots + \gamma^*) \left(\to \gamma G + \gamma G + X \right)$

C. Macesanu, CD McMullen and S. Nandi Phys.Lett. B546 (2002) 253

o can be fooled by SUSY

HC Cheng, KT Matchev, and M Schmaltz Phys.Rev. D66 (2002) 056006 (hep-ph/0205314) ILC: spin can distinguish between SUSY and UED better than at LHC

 $q_n^{\bullet}q_n^{\bullet}, q_n^{\bullet}q_n^{o}, q_n^{o}q_n^{o}$

2.5

 $q_n^{\bullet}g_n^{*}, q_n^{\circ}g_n^{*}$

C. Macesanu, CD McMullen and S. Nandi PR D66 (2001) 015009

M (TeV)

3

Many other topics...

♦ QCD:

- > measurement of α_s through high E_T jets (ILC: use event shapes)
- parton densities
- tests of NNLO corrections
- Forward physics

Ieptoquarks

reach: ~ 1.5 TeV

scalars in the bulk

- $\succ \rightarrow$ coupling to Higgs
- mixing with Higgs

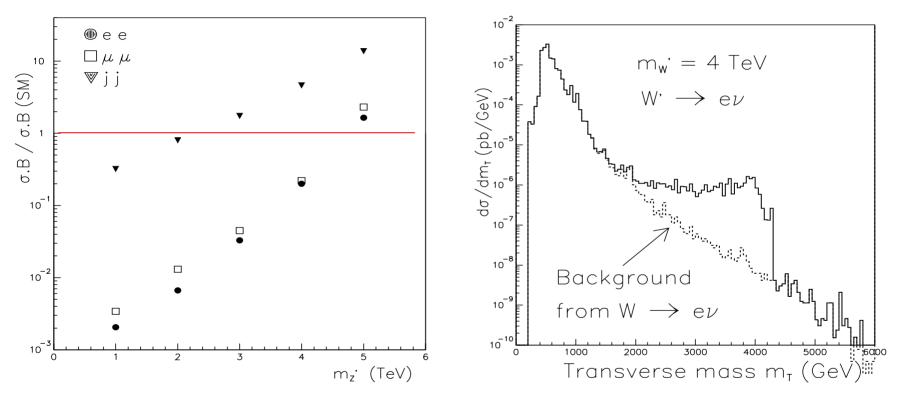
Lepton Flavor Violation:

- \succ $\tau \rightarrow 3 \mu$
- in SUSY decays
- monopoles
- isosinglet quarks...
- black holes

Conclusions

LHC: a discovery machine with a very rich programme of physics At the start of ILC, we can expect

- some manifestation from source of EWSB, and resolution of hierarchy problem? (SM, SUSY, little Higgs? extra Dimensions?)
 - « guarantee » of some new phenomena to be observed
 - ILC should refine understanding and help discriminate between models through clean precision measurements and new processes
 - telescope and microscope for much better measurement of couplings, consistency
- exotic physics
 - o extended gauge groups?
 - extra dimensions?
 - o compositeness?
 - o 3rd family couplings?


Observation of a resonance or other signal is not enough. What is the nature of the new physics ??

> ILC will allow to observe the new discoveries from a different angle and correlate precision measurements of different observables

Sequential Z', W'

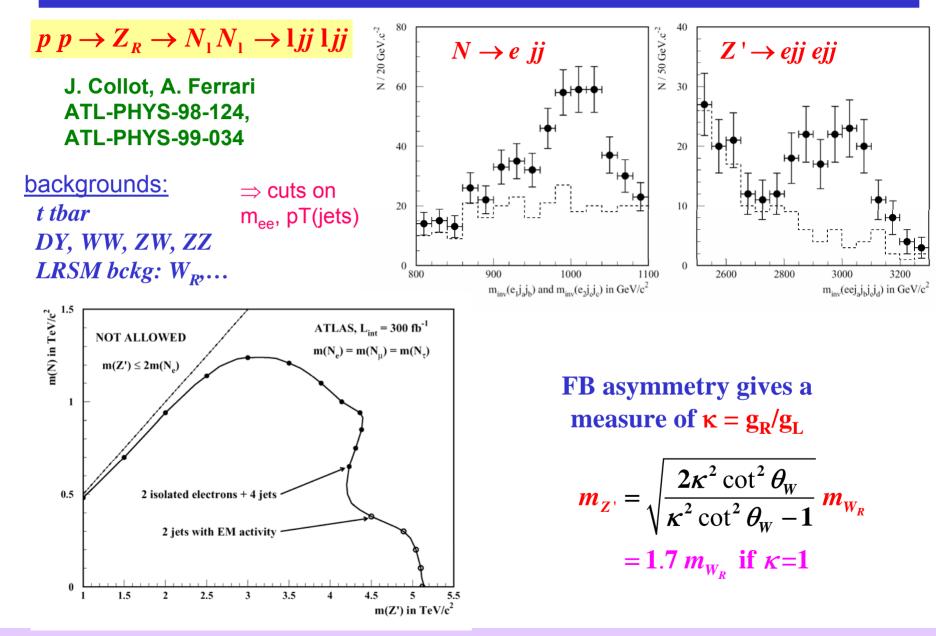
Generic Z', W' clean signals, little background

from TDR 100 fb⁻¹

- energy calibration, resolution, ID, efficiencies for high energy e, $\mu,$ jets
- charge assignment for e, $\boldsymbol{\mu}$

19 July 2006

Z': first sign of extended gauge group ?

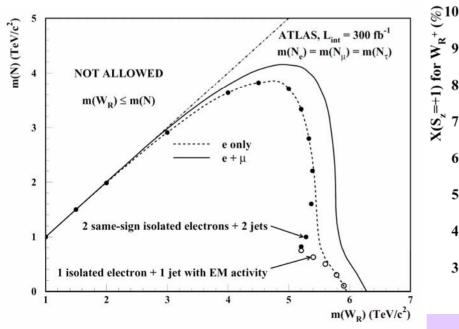

- → Left-Right Symmetric Model: triplet Higgs $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \xrightarrow{\Delta} SU(2)_L \times U(1)_Y$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ $W_L^i \qquad W_R^i \qquad C \qquad W_L^i \qquad B$ $g_L \qquad g_R \qquad g' \qquad g_L \qquad g_Y$
 - right-handed fermions in doublets → heavy Majorana v_R=N
 o explains low mass of v₁ (see-saw mechanism)
 - > W_R , Z_R associated with right-handed sector $W_R \rightarrow eN$, $Z_R \rightarrow ee$

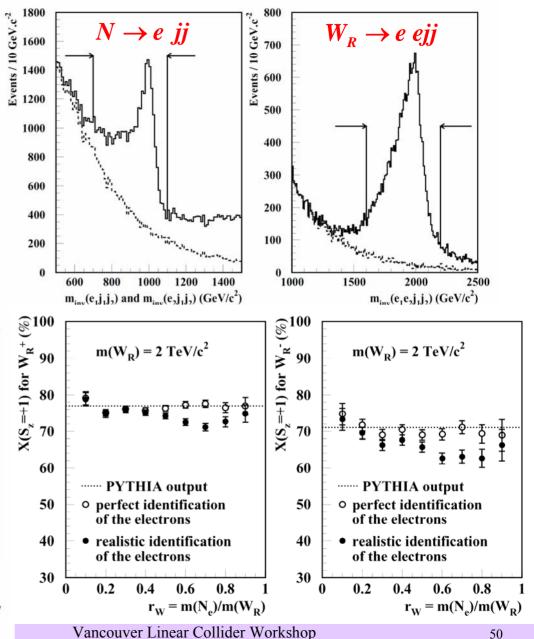
Iarger GUT groups (includes LRSM)

$$E_6 \to SO(10) + \frac{U(1)_{\psi}}{\downarrow} \\ SU(5) + \frac{U(1)_{\chi}}{\downarrow}$$

$$Q_{E_6} = \cos\beta Q_{\chi} + \sin\beta Q_{\psi} : \Rightarrow Q_{\eta} = \sqrt{\frac{3}{8}} Q_{\chi} - \sqrt{\frac{5}{8}} Q_{\psi}$$

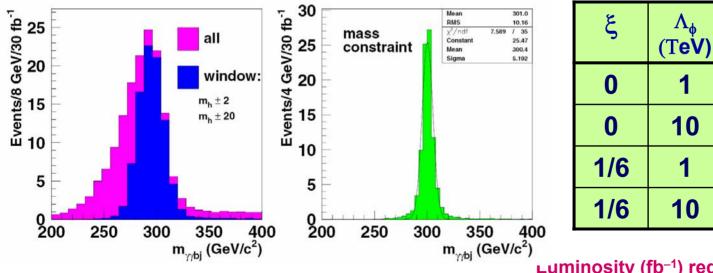
Z', W' in LRSM


19 July 2006



$$p p \rightarrow W_R \rightarrow l N_1 \rightarrow l l j j$$

J. Collot, A. Ferrari ATL-PHYS-98-124, ATL-PHYS-99-018


backgrounds: *t tbar DY*, *WW*, *ZW*, *ZZ*

Randall-Sundrum model: the radion

- signal: $\phi \rightarrow hh \rightarrow \gamma \gamma \ b\overline{b}$
 - similar to MSSM, but with appropriate corrections for width and branching ratios
 - > consider cases: m_{ϕ} = 300, 600 GeV, m_{h} = 125 GeV
- backgrounds negligible
 - $\rightarrow gg \rightarrow \gamma\gamma$ with QCD radiation
 - γj , with jet misidentified as photon

10 250 Luminosity (fb⁻¹) required for 5 σ discovery

m₆=300

GeV

4

333

2

 Λ_{ϕ}

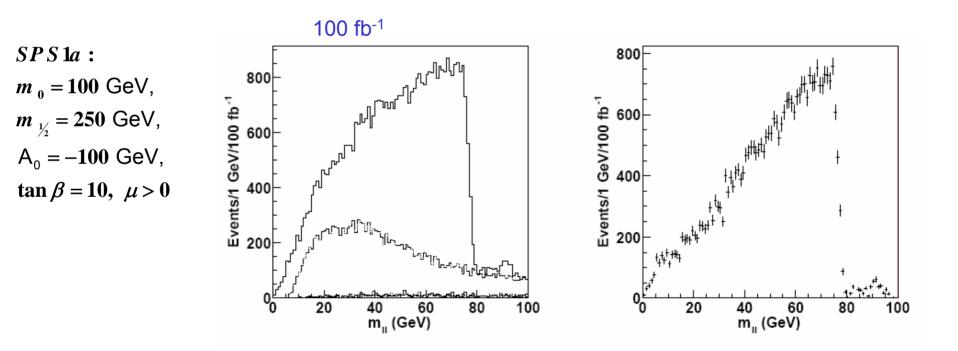
1

10

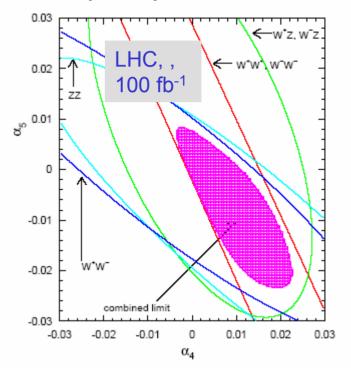
1

reach: 2.2 TeV or 0.6 TeV for $m\phi$ = 300 or 600 GeV, respectively, with 30 fb⁻¹

19 July 2006


Vancouver Linear Collider Workshop

m₀=600


ĠeV

43

57

A. Belyaev, Phys Rev D59 1998 015022

