VLCW06, Vancouver, July 19-23, 2006

Precision Physics WG Summary

Conveners: Frank Petriello, Doreen Wackeroth, Aurelio Juste

The Power of Precision Physics

- The LHC will be probing the relevant energy scale and should definitely discover signs of the EWSB dynamics.
- The main strength of the ILC resides on its precision and model independence ⇒ will complement the LHC by providing essential information to interpret and exploit these discoveries.
- Here we cover Top, QCD and EW Physics, although at the ILC, precision measurements will extend well beyond these topics.
- Precise measurements of EW (e.g. M_w) and QCD (e.g. α_s) parameters essential to provide precise theoretical calculations, constrain models of New Physics, extrapolate to GUT scale, ...
- $m_t \sim 175 \text{ GeV} \Rightarrow \lambda_t = \sqrt{2} \text{ m}_t/\text{v} \approx 1$ \Rightarrow The top quark may either play a key role in EWSB, or serve as a window to New Physics related to EWSB.

Fully outlining the top quark profile will be critical to unravel the secrets of EWSB.

Top Production in e⁺e⁻ Collisions

Top pair production via γ/Z exchange dominates

 $\sigma_{tt}{\sim}0.6$ pb at $\sqrt{s}{=}500$ GeV \Rightarrow ~200k events/year (L=2x10^34cm^-2s^-1)

Event generators

 $e^+e^-\rightarrow (tt) \rightarrow WbWb: O(\alpha_s)$

The anticipated experimental accuracy must be matched with precise theoretical predictions

Available

Total cross section

tt, threshold: NNLL QCD, N(LL) EW

continuum: $O(\alpha_s^2)$, $O(\alpha_{EW})$, 2-loop Sudakovs

ttH : $O(\alpha_s)$, $O(\alpha_{EW})$, tt threshold effects

Will be needed: e+e- \rightarrow 6f (lusifer) and e+e- \rightarrow 8f to O(α_s)

consistent treatment of unstable particles, non-factorizable corrections,...

Top Pair Production at Threshold (I)

- Large Γ_t: cutoff for non-perturbative QCD effects
 - Top decays before top-flavored hadrons or tt-quarkonium bound states can form.
 - Use non-relativistic pQCD to compute σ_{tt} near threshold.
- Remnants of toponium S-wave resonances induce a fast rise of σ_π near threshold.

Basic parameters: σ_{tt} (m_t, α_{s} , Γ_{t})

- ⇒ high precision expected (color singlet system, counting experiment,...)
- Convergence of calculation sensitive to m_t definition used: pole mass is not IR-safe
 - $\Rightarrow \sigma_{tt}^{peak}$ not stable vs \sqrt{s}

Solution is to use threshold masses: e.g. 1S mass (=1/2 the mass of the lowest tt bound state in the limit $\Gamma_{+}\rightarrow 0$).

High accuracy in absolute normalization requires velocity resummation.

State of the art (NNLL): $(\Delta \sigma_{tt})_{QCD} \sim 6\%$

Goal: 3% ⇒ important to take into account previously neglected %-level effects: EW corrections (Γ_t+non-resonant W+bW-b background, QED), non-factorizable QCD corrections,... ⇒ a lot of work ahead!

⇒ Talk by Andre Hoang

Top Pair Production at Threshold (II)

Lineshape significantly distorted:

$$\sigma^{\text{obs}}(\sqrt{s}) = \frac{1}{L_0} \int_0^1 L(x) \, \sigma(x\sqrt{s}) \, \mathrm{d}x$$

- Beam energy spread+Beamstrahlung: must be measured (acollinearity in Bhabha events) ⇒ detector/theory precision.
- Bremsstrahlung (ISR): can a-priori be calculated precisely (enough?)
- Precise determination of dL/d \sqrt{s} and \sqrt{s} critical.

Not only σ_{tt} but also differential observables are important!

- To implement effect of experimental cuts (MC event generators)
- Exploit additional experimental information from A_{FB}, dσ/dp_t, s_t,...
 - Additional sensitivity to m_t , α_s and Γ_t
 - Reduce correlations
 - ⇒ Simultaneous determination of parameters possible when using all threshold observables.
- Non-factorizable QCD (aka "rescattering") corrections important.
- N(N)LO QCD corrections are available and should be implemented in a MC event generator for more realistic experimental studies.

Experimental Threshold Scan (I)

Example of attainable precision:

- 9+1 point scan with 30 fb⁻¹/point.
- Lepton+jets and alljets final states.
- Assumptions:
 - Theoretical uncertainties: $\Delta \sigma_{tt} = 3\%$, $\Delta p_t^{peak} = \Delta A_{FB} = 0$
 - Perfect knowledge of luminosity spectrum
 - SM top couplings
- Simultaneous determination of m_t , α_s and Γ_t (experimental uncertainties only):

 $\Delta m_t(1S)$ =19 MeV, $\Delta \alpha_s$ =0.0012, $\Delta \Gamma_t$ =32 MeV , ρ_{ii} <0.5

Theoretical uncertainty on m_t ~ O(100 MeV). More work needed for a precise estimate.

- Experimental analysis should be repeated with increased level of realism:
 - Run parameter optimization (beamstrahlung, integrated luminosity/point, beam polarization, ...)
 - Current detector concepts: event reconstruction and selection
 - Realistic energy and luminosity spectrum uncertainties
 - Improved Monte Carlo event generator (including rescattering corrections)
 - Realistic theoretical uncertainties
 - Simultaneous determination of top anomalous couplings and/or implementation of external constraints for a model-independent determination of threshold parameters

. . .

Experimental Threshold Scan (II)

- Ongoing work to build a MC event generator for precise tt threshold studies, including:
 - State of the art theoretical calculations for inclusive cross section and differential distributions
 - Top polarization
 - Realistic luminosity spectrum

- Important requirement: speed (NNLO calculation in TOPPIK takes >1.5s/event) \Rightarrow pre-compute Green functions with TOPPIK and perform fast 4D interpolation in $(m_t, \Gamma_t, \alpha_s, \sqrt{s})$
- Powerful tool for the next generation of threshold studies: top spin physics at threshold, optimization of scan strategy, additional observables, meaningful systematic uncertainties,...

Top Quark and New Physics

- The top quark plays a prominent role in many models of New Physics.
 - Radiative effects in the top sector drive EWSB (e.g. Little Higgs)
 - New particles preferentially coupled to the top quark:
 - Vector gauge bosons (e.g. g_t in Topcolor, V_{KK} in Randall-Sundrum extra-dimensions,..)
 - Charged scalars (e.g. H[±] in generic 2HDMs)
 - Neutral scalars (e.g. η_T in Technicolor)
 - Mixing with the top quark (e.g. TopFlavor)
 - ...
- In many instances the new states can be sufficiently heavy that they are not produced directly at the ILC (or even the LHC).
 - ⇒ The first indication for New Physics might be in the form of modified top quark interactions.
- Anomalous top couplings can manifest themselves affecting many observables:
 - total cross-sections,
 - tt invariant mass distribution,
 - · angular distributions of decay products,
 - rare decays,
 - ...
- Several operators can contribute to a given observable.
 Must disentangle the effect of different operators. Beam polarization will be a crucial tool.
- High precision and model independence critical to be able to rule/figure out specific models of New Physics.

Top-Higgs Yukawa Coupling

- The top-Higgs Yukawa coupling is the largest coupling of the Higgs boson to fermions. Precise measurement important since the top quark is the only "natural" fermion from the EWSB standpoint.
- Can be determined via cross section measurement: $\sigma_{tth} \propto g_{tth}^2$
- $\sigma_{tth}(Born) \sim 0.2(2.5)$ fb at $\sqrt{s}=500(800)$ GeV for $m_h=120$ GeV

hep-ph/9910301 hep-ph/0604034

- However, at $\sqrt{s}=500$ GeV the tt dynamics is non-relativistic
 - ⇒ must use vNRQCD as in the tt threshold

⇒ Talk by Andre Hoang

Considering σ_{tth} enhancement due to:

• Large QCD resummation effect:

$$\sim$$
x2.4 for m_h=120 GeV

Use of beam polarization:

$$\sim$$
x2.1 for (P(e⁻),P(e⁺)) = (-0.8,+0.6)

Anticipate:

 $(\Delta g_{ttH}/g_{tth})_{stat}$ ~10% for m_H=120 GeV, L=1 ab⁻¹

Top Quark and Extra-Dimensions (I)

- Solving the hierarchy problem is one of the main focus of models of New Physics (e.g. SUSY, Technicolor, extra-dimensions,..)
- Randall-Sundrum extra-dimensions:
 - 5D spacetime w/ one dimension (y) compactified on a S₁/Z₂ orbifold (AdS₅ geometry)
 - Bounded by Planck and TeV branes

$$M_P^* = M_P e^{-\pi kR} \sim TeV$$
 (if kR ~ 12)

- ⇒ solution to hierarchy problem
- Higgs on TeV brane
- Gauge bosons in 5D bulk ⇒ KK excitations
- CASE 1: fermions on TeV brane
 - Enhanced coupling to KK-gauge bosons
 ⇒ significant corrections to fermion pair production (here the top quark is not special)
 - Severe constraints from precision EW data: M_{KK}>20 TeV (inaccessible to LHC)
 - Precise measurements at the ILC sensitive to very high mass.

 \Rightarrow Talk by Erin De Pree

Planck brane TeV brane

Top Quark and Extra-Dimensions (II)

- CASE 2: fermions in the bulk
 - Precision EW constraints less severe: M_{KK}>10 TeV
 - Fermion mass hierarchy explained by "geography"
 - Top quark is special: stronger coupling to KK-gauge bosons than the rest of fermions
- Different observables would be affected:

$$\frac{\delta\sigma}{\sigma} = (0.24\alpha_L + 0.14\alpha_R) \frac{s}{M_{KK}^2}$$

$$\delta A_{LR} = (0.26\alpha_L - 0.19\alpha_R) \frac{s}{M_{KK}^2}$$

Negligible effect on A_{FB} (distinct from other extra-Z models)

Anomalous t-t- γ and t-t-Z couplings (also possibly due to top/KK-top mixing effects)

- In summary, probe M_{KK}>50-150 TeV (fermions on the brane) or up to M_{KK}~10 TeV in large regions of parameter space (fermions off the brane).
- Future improvements: P(e+), top polarization observables,...

5 dimensional wavefunctions

⇒ Talk by Erin De Pree

The Role of Precision Observables

- Important ingredient for EW precision analyses at the quantum level.
 - ⇒ incisive consistency checks
 - ⇒ constrain/rule out models of New Physics
 - ⇒ provide valuable information on the parameters of the Lagrangian
- Two prominent examples: M_W and m_t
- Experimental uncertainties:

	Today	Tevatron/LHC	ILC	"GigaZ"
ΔM_W [MeV]	32	20/15	10	7
∆m _t [GeV]	2.3	1.5	0.1	

- Theoretical uncertainties (within the SM):
 - Intrinsic: ΔM_W^{intr}~4 MeV (2 MeV future?)
 - Parametric (due to ∆m,):

 $\begin{array}{ll} \text{Today:} & \Delta m_t = 2.3 \text{ GeV} \Rightarrow \Delta M_W^{\text{para,mt}} = 14 \text{ MeV} \\ \text{LHC} & : & = 1.5 \text{ GeV} \Rightarrow \Delta M_W^{\text{para,mt}} = 9 \text{ MeV} \\ \text{ILC} & : & = 0.1 \text{ GeV} \Rightarrow \Delta M_W^{\text{para,mt}} = 1 \text{ MeV} \\ \end{array}$

- Need ILC precision on m₊:
 - Top match future accuracy on M_W (and $\sin^2\theta_{eff}$)
 - To exploit LHC (and ILC) precision on Higgs measurements

• ...

Precise M_w Prediction in the MSSM

- Precise theoretical predictions for electroweak observables required to fully exploit anticipated experimental accuracy.
- M_W prediction in terms of M_Z , α , G_u and Δr :

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{\pi \, \alpha}{\sqrt{2} \, G_\mu} \left(1 + \Delta r\right)$$
 Loop corrections

- Current intrinsic theoretical uncertainty within the SM (ΔM_W^{intr}~4 MeV): ~ok
- What about within the MSSM? Obtain best prediction possible by:
 - Using best available SM result
 - Implementing all available MSSM corrections

 \Rightarrow Talk by Sven Heinemeyer

Prospects for SUSY at the ILC

- <u>Idea</u>: combine different precision observables and look for favored regions of parameter space.
- Observables: M_W , $\sin^2\theta_{eff}$, $B(b\rightarrow s\gamma)$, $(g-2)_{\mu}$, M_H
 - Build χ^2 taking into account experimental and theoretical (parametric+intrinsic) uncertainties

⇒ Talk by Sven Heinemeyer

- Obtain best fit for masses.
- Too many free parameters in MSSM.
 - ⇒ Consider a number of scenarios with reduced # free parameters:

CMSSM (mSUGRA): 5 parameters (m_0 , $m_{1/2}$, A_0 , $tan\beta$, $sign(\mu)$)

- Impose hard constraint: LSP gives right amount of Cold Dark Matter.
- Rather good fit to current data ($\chi^2 \sim O(2)$).

- Similar conclusion regarding ILC reach in different scenarios:
 - $tan\beta = 10$: sleptons, charginos, neutralinos (partially) in reach. Some chance for light stop.
 - $tan\beta = 50$: sleptons, charginos, neutralinos (partially) in reach. Hardly any chance for light stop or gluinos.
 - ⇒ Rather good prospects for the ILC

New Approaches to Higher Order Calculations

- Many physics processes at the ILC involve a large number of final state particles.
- Feynman diagram method is not optimized for multi-leg processes.
- More efficient methods have been developed that exploit symmetries in QCD leading to "recursion relations"

⇒ Talk by Carola Berger

- "Trees are recycled into trees"
 - 6 gluon amplitude in agreement w/ previous calculations [Giele et al]
 - Many applications: massive particles, SUSY,...

- Some results for parts of Higgs+gluons @ NNLO
- A-priori no obstacles towards phenomenology

"Trees are recycled into loops" "Loops are recycled into loops"

- In certain kinematic regions, precise theoretical calculations involve resummation of large logs.
- Exploring application of Soft Collinear Effective Theory (SCET; developed for b-physics) for resummation in collider physics.
- Application: large momentum transfer Q^2 , but hadronic final states with small M_χ ($\alpha_s^n \ln^{2n}(M_X/Q) \uparrow$)
- Traditionally, resummation is performed in moment space.
 - Caveats: Landau poles, Mellin inversion only numerically
- Solving Renormalization Group equations in SCET, one obtains resummed expressions directly in momentum space.
 - Clear scale separation. No Landau pole ambiguities.
 - Analytic expressions for resummed rates.
 - Simple connection with fixed order expressions.

⇒ Talk by Thomas Becher

Conclusions

- After the first signs of New Physics at the LHC, precision measurements at the ILC will likely catalyze the next revolution in Physics by helping answer truly fundamental questions.
- Important to keep a dynamic and active Precision Physics Working Group:
 - The physics case needs to keep being sharpened all the time;
 - An increased involvement of experimentalists crucial to establish a feedback loop between the detector and its physics (an existing gap that needs to be bridged);
 - Theorists must find enough incentives to work on the precise theoretical predictions/tools that will be required to carry out the ILC physics program (in many cases involve multiyear projects).
- Finally, many thanks to our speakers: Thomas Becher, Carola Berger, Erin De Pree, Filimon Gournaris, Sven Heinemeyer, Andre Hoang,
 - and the rest of participants, for contributing to very productive and stimulating sessions.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.