

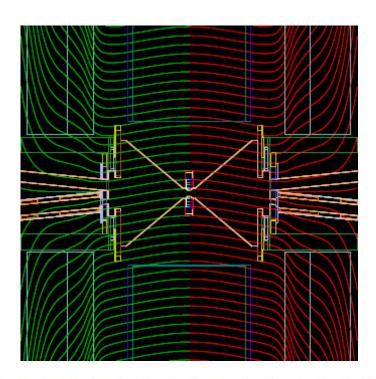
Status Report of Nonhomogenous Magnetic Field Study

Jason Abernathy Christian Hansen Dean Karlen

07/19/2006 VLCW06

University of Victoria

1



- To develop:
 - A new TPC simulation in an existing framework (Geant4 / Mokka / Marlin)
 - A Marlin version of the likelihood method of fitting tracks to data which uses LCIO
- To determine:
 - The effects of a non-homogenous (NH) magnetic field on the resolution of the TPC
 - Methods of taking this into account

Sources of a NH Magnetic Field

- Main Solenoid Field Crossing Angle
 - A crossing angle of 2 20 mrad is introduced to reduce unwanted bunch interactions and allow more accurate post-IP diagnostics
 - Polarization
 - Energy
 - The crossing angle causes a non-homogenous field
- Main Solenoid Field Imperfections
 - How much an affect will this have?

- IR compensation (DID, anti-DID)
 - Tries to compensate for the main solenoid field in the interaction region using for example a detector integrated dipole
 - Can make things nice in the IR but the field will affect the TPC as well

- Changed the path of particles
 - Primary Particles
 - Electrons in the TPC drift gap
- The field will have to be mapped
 - Hall probe
 - Use data to find corrections
 - Resolution of $\delta B/B_z < 1 \times 10^{-5}$ is required

Simulation

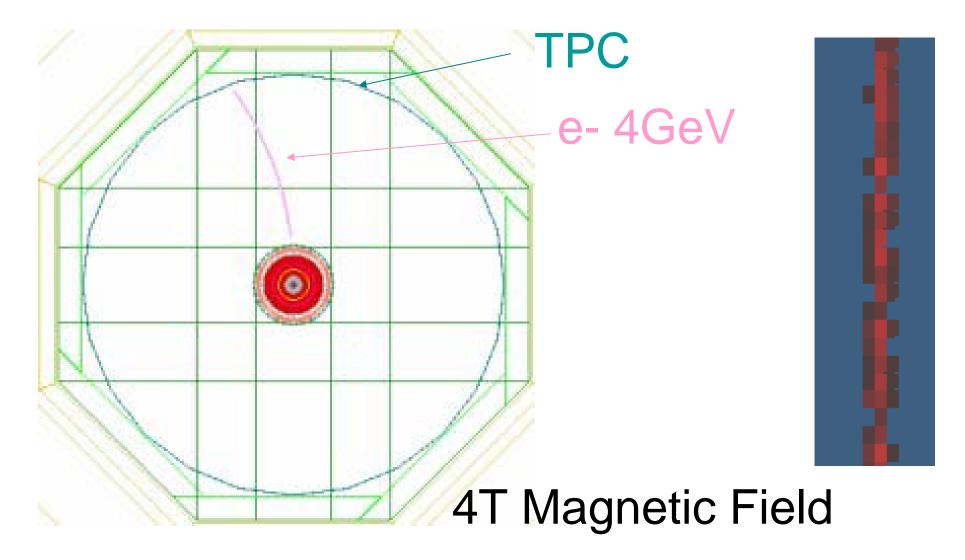
- Implemented using Mokka
 - Allows parameters to be stored in a MySQL database and accessed with drivers
 - Gas composition
 - Geometry
- Energy deposits created by primary particles are converted into clouds of electrons with
 - Mean position (x, y, z, t)
 - Transverse / Longitudinal deviation
 - Number of electrons in cloud (1 per 26 eV)

- Clouds are transported through "sections" of the TPC
 - Gas sections
 - Amplification devices (currently only GEMs)
- Uses Langevin theory of electrons in gas

Assuming
$$\vec{E} = [0, 0, E_z]$$
 and $\mu = \frac{d_v}{E_z}$ we get
 $v_x = \frac{d_v}{1 + (\omega\tau)^2} \left\{ -\frac{\omega\tau}{B} B_y + \left(\frac{\omega\tau}{B}\right)^2 B_z B_x \right\}$
 $v_y = \frac{d_v}{1 + (\omega\tau)^2} \left\{ \frac{\omega\tau}{B} B_x + \left(\frac{\omega\tau}{B}\right)^2 B_z B_y \right\}$
 $v_z = \frac{d_v}{1 + (\omega\tau)^2} \left\{ 1 + \left(\frac{\omega\tau}{B}\right)^2 B_z^2 \right\}$

Under Development

ilr


Ìİ.

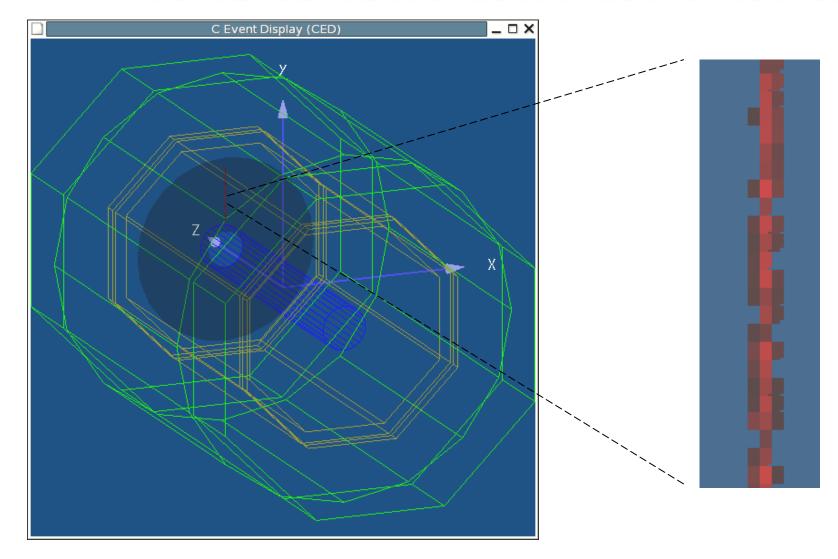
- Electron transport is done with an Euler's technique (using small steps)
- Magnetic field is created from a driver using parameters in a database
 - FieldX00 driver can handle
 - Ideal solenoids
 - Ideal solenoid with DID (including a kink)
 - Solenoid from a field map
 - DID from a field map
 - Ideal quadrupole field
 - Values for B_x , B_y , B_z are queried from Geant4
- Final output is an LCIO file of signals on pads

Under

Development

Simulation Continued...

University of Victoria


- Uses the Marlin framework
 - Based on "processors" which acts upon and creates new sets of data
- Modular pieces are being developed in parallel
 - Signal calibration
 - Pattern recognition / Seed Track
 - TrackFitterLikelihood (UVic)
- More info on TPC Marlin reconstruction framework was given in C.Hansen's talk yesterday

Reconstruction Continued...

- TrackFitterLikelihood
 - Developed by D.Karlen
 - Uses parameters
 - σ_0 : base diffusion of TPC components
 - D: diffusion constant of TPC gas
 - P_{noise}: modifies how spurious signals affect likelihood
 - LCIO Track Parameters
 - Φ , Ω , tan(λ), d₀, z₀
 - Assumes a line-gaussian distribution
 - Calculates the likelihood of observing the data given a hypothetical track
 - Minuit minimizes the –log likelihood

Reconstruction Continued...

07/19/2006 VLCW06

University of Victoria

- Momentum Resolution study
 - Determine a good estimate of the TPC resolution under user-defined magnetic field conditions
- Develop methods to map the inhomogenities with data from the TPC and other subdetectors

References / More Information

- References
 - "The drift of electrons and ions in gases or, how to design a good TPC"
 - <u>http://www.google.com/url?sa=U&start=1&q=http://www.pd.infn.it/gruppi/g1/2002Vavra_student_lecture.pdf&e=97</u>
 <u>97</u>
 - Adrian Vogel's Homepage
 - http://www.desy.de/~vogel/
 - 2005 Snowmass (Ron Settles)
- More Information
 - <u>http://particle.phys.uvic.ca/~mcgeac00</u>
 - Jabrnthy@uvic.ca
 - http://particle.phys.uvic.ca/~hansen
 - http://linearcollider.ca/Members/Karlen