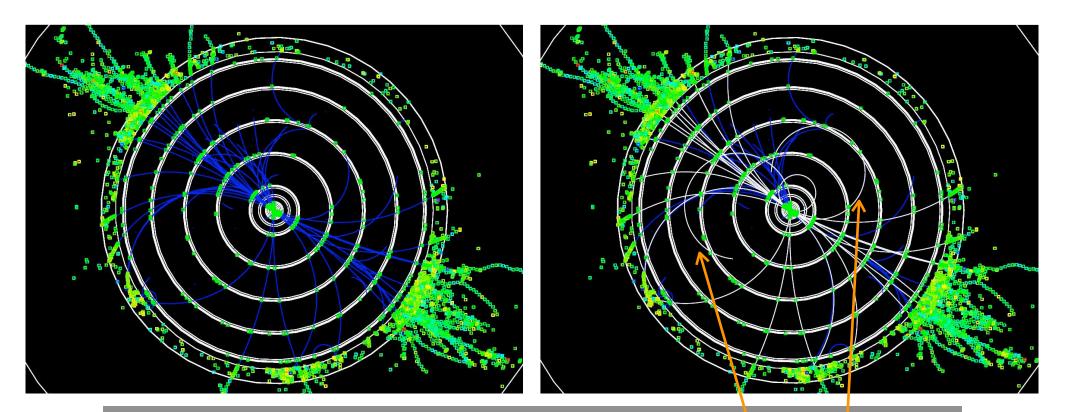
Tracking and Fitting with SODTracker & KFFitter

Fred Blanc and Steve Wagner University of Colorado

Vancouver Linear Collider Workshop 2006 July 19, 2006


Tracking: SODTracker

- Track finding in the <u>Silicon Outer Detector</u> (SOD)
- Tracking method:
 - I. Obtain seed track in the Vertex Detector (VD)
 - seed tracks from hit combinations in VD or from MCParticle true information (cheat track).
 - can use Tracks from any track finder when available.
 - 2. Add hits from the Barrel strip tracker (Endcaps coming soon)
 - 3. Fit track
 - **Helix fit** (or Kalman Filter with KFFitter)
 - 4. Insert SODTrack in event

SODTracker package

- Code ported from hep.lcd to org.lcsim
- Results stored in **SODTrack** object
 - SODTrack: implementation of *org.lcsim.event.Track*
- SODTracker package in CVS (org.lcsim.contrib.SODTracker)
- Tested on single track and physics samples
 - runs without crashing
 - allows visualization of SODTracks on event display and event browser (see next page)
- Package contains test driver in test/TestSOD.java

Event display for $e^+e^- \rightarrow Zh$ MC

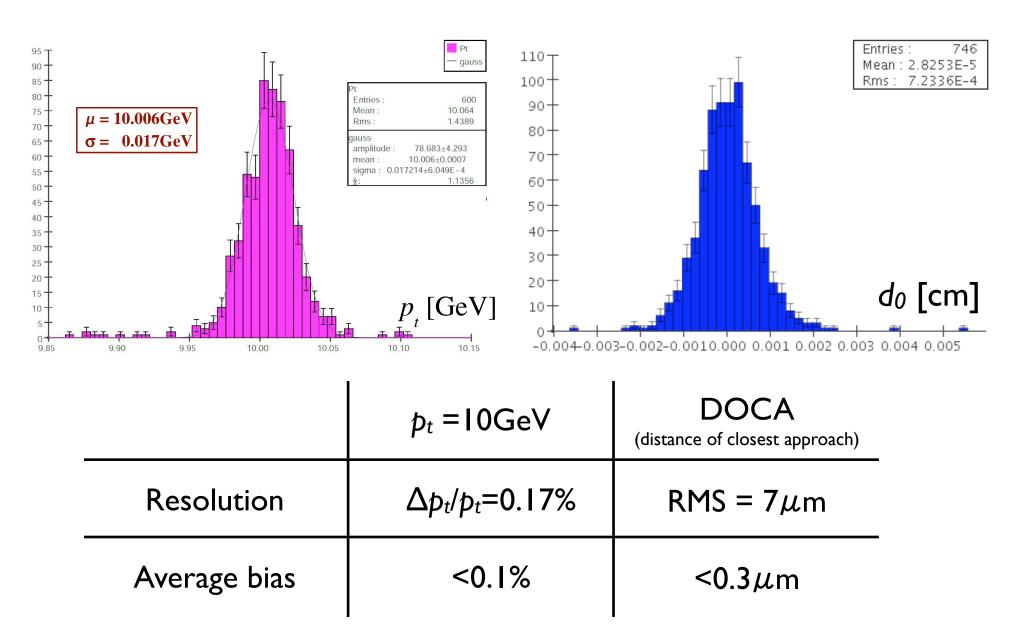
- MCparticles in blue
- SODTracks in white
- Show barrel only
- Most barrel tracks are reconstructed (including curlers)

Performance studies

- A. Track finding **efficiency**
- B. Helix fit **resolution** and **bias**
- Assumed resolution:
 - $5\mu m$ ($r\phi$ and z) in the Vertex Detector
 - $7\mu m$ in the Tracker
- Input data (sidaug05):
 - single-track Monte-Carlo:
 2GeV, 10GeV, 20GeV (θ=90°) pions
 100GeV muons (θ=90°, 120°, 130°, 140°)
 - ZZ and Zh physics Monte-Carlo

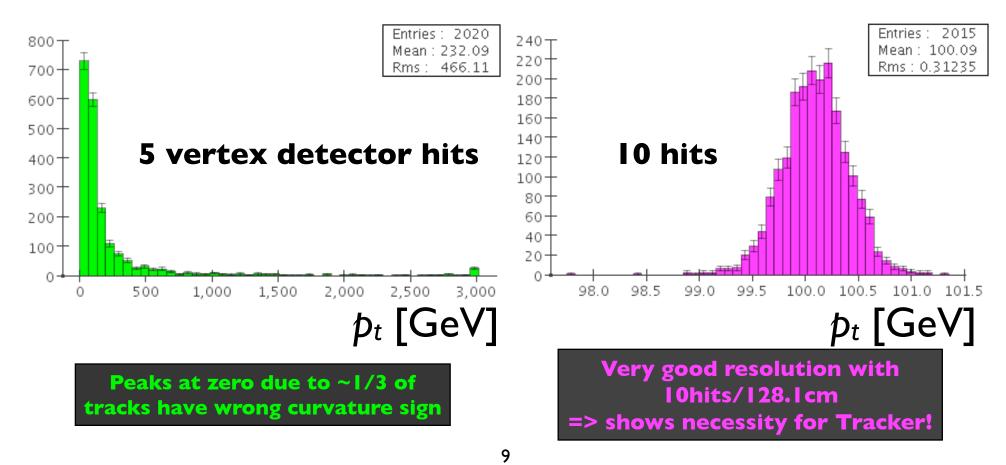
Track finding efficiency

- Run on (barrel-only) single-track MC
- Reject tracks strongly interacting with detector material

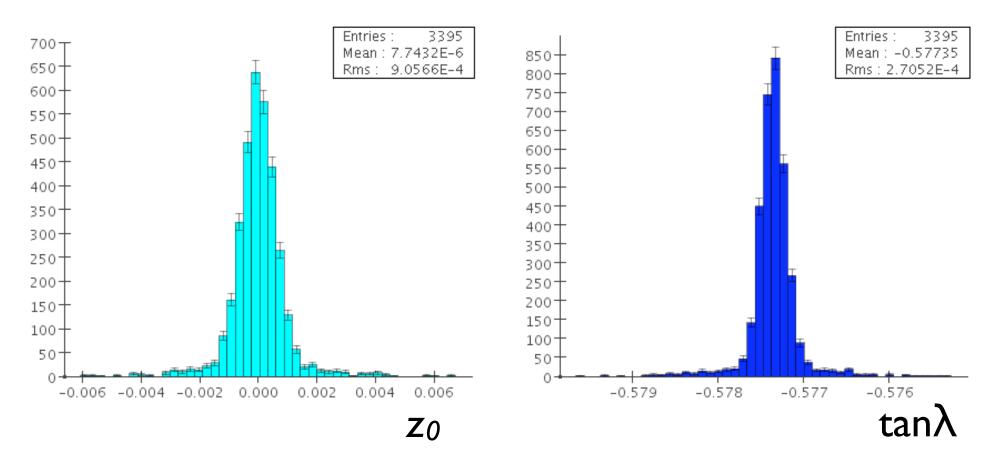

 Count tracks with 9 or 10 hits 	Þt	Efficiency
-	2GeV	99.3%
	5GeV	99.9%
	10GeV	99.9%
• Previous studies showed:	20GeV	100%
	100GeV	100%

- 99.5% efficiency for Z⁰→µ⁺µ⁻ tracks embedded randomly in 2-jet events [reported at Snowmass 2005]
- 97% for tracks embedded very close to the core of the jet, >99% everywhere else. Reduction in efficiency thought to be an artifact of the embedding technique [reported at Paris LCWS'04 and in SLAC-PUB-10991]

Helix fit: *p*_t resolution


- Run on single-track MC
- Fit gaussian to p_t distribution:
 - Δpt/pt=0.17% for 2-20GeV
 Δpt/pt=0.29% at 100GeV
 - small bias relative to generated momentum
 - $p_t^{\text{meas}} p_t^{\text{gen}} < 0.1\%$ (~0.07% at 20GeV)
 - further improvement expected with Kalman filter

Helix fit: p_t and d_0


p_t resolution with 5 & 10 hits

- Compare *p*_t resolution from
 - Vertex Detector only (5 hits, 4.6cm transverse path length)
 - Vertex Detector + Tracker (10 hits, 128.1cm transverse path length)
- Run on 100GeV single muon MC

Helix fit: $tan(\lambda)$ and z_0

- Measure z_0 and $tan\lambda$ from helix fit
- 100GeV single muon MC, generated at 120° (tan λ =-0.57735), and z_0 =0
- Fitted value are unbiased

Kalman Filter Fit: KFFitter

- Apply Kalman filter technique to SODTracks
- KFFitter (loosly) inspired by BABAR Kalman Fitter [D.Brown CHEP'97 <u>http://www.ifh.de/CHEP97/abstract/a341.htm]</u>
- Fitting method:
 - I. define track as collection of <u>Sites</u>:
 - a. hits
 - **b.** scattering points
 - c. B-field irregularities
 - 2. swim through Sites and apply Kalman filter
- Modular, flexible implementation

KFFitter: package structure

KFFitterDriver

Creates KFTracks from SODTracks Calls KFTrack's fit method Monitors fit results

- Package in development
- Flexible and modular design
 - can accommodate other classes with similar functionality

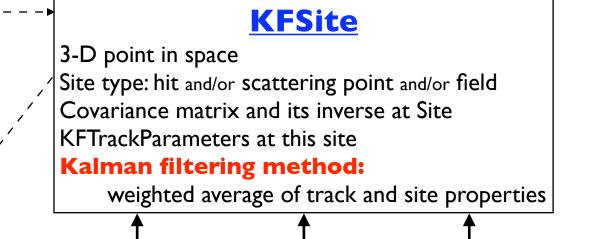
KFField

B-field irregularity

• To be committed to CVS

<u>KFTrack</u>

List of KFSites KFTrackParameters (seed track) Fit method:


loops over KFSites in- and outward swimming

KFTrackParameters

Fit, Helix, Point representations Covariance matrices and their inverse

Kalman prediction method:

Extrapolation 3D to 3D point

KFScatterPoint

material

KFHit

measurement

Conclusion

• **SODTracker:**

- efficient hit adder for the outer detector
- recently added <u>Helix fit</u> (to be committed as V01-01-00)
- available in org.lcsim.contrib.SODTracker

• **KFFitter**:

- Kalman filter fitting package
- modular design
- in development
- Packages to be combined for **Kalman-based hit adding**