

Uwe Schneekloth DESY

12.12.2008

Space between Barrel and End-cap

Presented in Chicago

- Foreseen gap between barrel and end-cap 25mm
- Rough estimate of end-cap E/HCAL cables (C.Clerc)
 - Surface of sensors ECAL: each EC is 1/4 of full barrel
 - Sensors HCAL: each EC 40% of full barrel
 - \rightarrow area 0.253 m² x 2 (for installation, tolerances)
 - \rightarrow space (thickness) 20mm without muon chambers and ETD
 - Plus about 10mm for hard stops
 - \rightarrow Need at least 30mm
 - Will increase stray field
- Should ask components to reduce their cables a much as possible

Progress

- Large difference between ECAL and HCAL cables was due to different assumptions
 - HCAL with concentration at module level needs about 4 x ECAL cable space
 - Cable cross section smaller. In total about 7mm for routing between B and EC
 - Foreseen gap of 25mm should be fine
 - Some concern by A. Herve concerning mechanical tolerances

CST EM Studio 3 D calculations (A.Petrov)

• Now variable mesh size, 3 to 4 10⁶ cells

Opera 2 D calculations (B.Krause)

Yoke segmentation (as in reference detector note)

- 100mm field shaping plate only end-cap
- 10 x (100mm + 40mm gap)
- n x (560mm + 40mm gap)

Chicago MDI meeting:

• Goal < 50 G at 15m from beam line

Stray field at distance from beam line (y) and distance from iron yoke (d)

central field 3.5 T

CST EM Studio (A.Petrov)

iron yoke	1 thick p	olate	2 thick p	lates	3 thick plates		
B (T)	3.6		3.7		3.6		
z (m)	0	5.4	0	5.4	0	5.4	
B stray (G)	y (m)	y (m)	y (m)	y (m)	y (m)	y (m)	
200	11.5	11.8	7.1	11.8	7.7	11.3	
100	16	15.1	14.1 15.8		13.4	13.9	
	d (m)	d (m)	d (m)	d (m)	d (m)	d (m)	
200	5	5.3	0	4.7	0	3.6	
100	9.5	8.6	7	8.7	5.7	6.2	

Stray field at distance from beam line (y) and distance from iron yoke (d)

central field 4 T

CST EM Studio (A.Petrov)

iron yoke	1 thick plate				
B (T)	3.9				
z (m)	0 5.4				
B stray (G)	y (m)	y (m)			
200	13.4	13.1			
100	~ 18	~ 17			
200 100	d (m) 6.9 ~ 11.5	d (m) 6.6 ~ 10.5			

Stray Field Calculations

	Chicago central field 3.5 T								upda	ite 4 T
			3 thick p	lates	3 thick p	lates	3/2 thick	plates	3/2 thick	plates
Iron yoke	3 thick p	plates	EC filled		EC parti	y filled	EC parti	y filled	EC partly	y filled
В(I)	3.6		3.6		3.6		3.6		4	
z (m)	0	5.4	0	5.4	0	5.4	0	5.4	0	5.4
B stray (G)	y (m)	y (m)	y (m)	y (m)	y (m)	y (m)	y (m)	y (m)	y (m)	y (m)
200	7.7	11.3	7.6	7.9	7.6	7.9	7.6	8.2	7.6	8.4
100	13.4	13.9	10	10.3	10	10.3	10	10.3	10.5	10.6
50							13.2	12.6	13.7	13.2
	d (m)	d (m)	d (m)	d (m)	d (m)	d (m)	d (m)	d (m)		
200	0	3.6	0	0.3	0	0.2	0	0.5	0	0.7
100	5.7	6.2	2.3	2.6	2.3	2.6	2.3	2.6	2.8	2.9
50							5.5	4.9	6	5.5

Stray field < 50G at 15m from beam line for 4 T. Limit as discussed in Chicago MDI meeting.

Progress Yoke Design

Stray Field Calculations

Central field 4 T Gaps partly filled

B vs. y at z = 0

B vs. y at z = 5.425m

Progress Yoke Design

U. Schneekloth

Mechanical Design of End-Cap

Chicago Preliminary end-cap deformation **ANSYS** calculations

Next steps:

- Include field shaping plate
- More realistic boundary conditions
- Do calculations with horizontals rips

C.Martens, M.Harz

Fixed at outer and inner radius max. deformation 66mm

Radial rip in

addition

Mechanical Design Progress

Preliminary end-cap deformation and stress

C.Martens, M.Harz

- Plates connected via radial rip, 1 per sector (1/12)
- Plates at outer and inner radius attached
- Pushing against hard stop 20x20cm at innermost barrel yoke plate
- Field shaping plate included

von Misses stress

Mechanical Design of End-Cap

Same as previous page, but with modified hard stop 20cm wide, radially extending from first to last barrel iron plate

Next steps:

- Repeat calculation with 2 instead 3 thick plates
- Do calculations with horizontals rips