

Cross-check of solenoid effects in BDSIM&DIMAD and plans

John Carter

Royal Holloway University of London

26th July 2005 SLAC - Weekly BDS meeting

Crosschecking Solenoid Effect

- Aim to cross check BDSIM tracking in the solenoid field with the coupling of the focussing elements
- Using the following common set up:
 - NLC 20mrad optics
 - $L^* = 3.5m$
 - Using SiD field map
- Comparing results to B.Parker, A.Seryi (SLAC-TN-04-044)

Figure 6: Beam orbit in SiD calculated in assumption of absence of any focusing elements (by simple integration of solenoid B_x). No compensation of the IP angle is applied yet.

Figure 7: Beam orbit in SiD determined by tracking with DIMAD. No compensation of IP angle applied yet. The IP beam coordinates are: $x=0.65~\mu\text{m},~y=-18.5~\mu\text{m},~x'=-0.21~\mu\text{rad},~y'=-104~\mu\text{rad}.$

Solenoid - no focussing elements

26/07/05 - J.Carter

BDS Meeting - SLAC

Solenoid & Focussing elements

Differences could be due to interpolation of the field - map only gives Bz to nearest cm 26/07/05 - J.Carter BDS Meeting - SLAC

Solenoid Effects

- Coupling of focussing elements and the solenoid field results in an offset at the IP of the angle and position
 - Significant for the core beam
 - Does not appear to be so important for the halo (in terms of the SR cone)

- Can be compensated by offset quads or kickers but produces a large deviation in the vertical orbit (~4mm)
 - Not yet shown in BDSIM

Short Doublet Set Up

- Using latest doublet parameters for L*=4.5, 1TeV set up
 - Improved design to fit in with more realistic magnet technology
 - Changed solenoid field map from TESLA TDR to LD (~GLD)

	Strength	Length [m]	Aperture Radius [mm]
L*	-	4.500	≥12
QD0	K1=-0.0956	2.500	35
D1A0	-	1.3299	80
SD0	K2=0.6189	3.800	80
D1B	-	3.883	80
QF1	K1=0.0403	2.000	10

Halo Collimation Depth Checks

- Warm QF Magnet implementation in BDSIM updated to be more realistic
- Not to exact specifications...
 - 1st order model to give surface area for reflected particle studies and volume for energy load
- This quad could be a major constraint in the Halo collimation depth
 - Previous values calculated used a Mask at 3m post IP as the constraint.
 - (F.Jackson, DL, presented at ILC-BDIR 2005)
 - First look shows that Halo electrons may hit QF beampipe or travel through a pocket (in a relatively low field)
 - Causes a problem with the larger aperture of QD0
 - May need to apply full field map to this quad - especially for studying extracted beam behaviour

Halo Collimation Depth Checks

- Assumed Nominal 1TeV IP parameters:
 - $\beta_{\rm x} = 30$ mm
 - $\beta_{v} = 0.3$ mm
- Limited statistics used here only a few 100 electrons fired based on a flat halo distribution
- Started with Nx = 16.5 and Ny = 97.5
 - Only modified Nx so far
- Need to run with higher statistics

Plans

- More detailed Halo Collimation Checks underway
 - Start by constraining collimation depths in the IR
 - Then use this Halo distribution to check collimation performance along the BDS
 - Check hard edge performance
 - Check background issues arising from showering at the Collimators
 - Collimation Depth Vs Backgrounds in the IR
- Check feasibility of latest 'short doublet' parameters
 - Reflection off of QF1
 - Energy loads on focussing elements

First look at Halo & SR at QF1. 6000 halo electrons generated - all of which goes through pocket of QF1

(Using Nx = 12.5 σ_x and Ny = 97.5 σ_y)

