

Results of BDSIM and capabilities of the tools

John Carter

Royal Holloway University of London

- Introduction to BDSIM
- Current BDSIM Developments
- Tracking along Beam Delivery System (20mrad)
- Pairs in the Interaction Region
- Halo Collimation Depth Studies
- Future Plans
 - Extraction line backgrounds
 - 20mrad IR Set Up.

12th July 2005 SLAC - Weekly BDS meeting

Introduction to BDSIM

- Author: G.Blair
- Maintainers/Developers: I. Agapov, J. Carter, and a new student (Sep 05)

20mrad BDS in BDSIM 12/07/05 - J.Carter

- BDSIM is a C++, Geant4 based toolkit providing
 - Fast tracking through accelerator components
 - All Physics Processes from Geant4
 - Any other processes, e.g.:
 - H. Burkhardt Synchrotron Routines
 - Neutron processes (implementation currently being investigated)
- Optics format output from MAD read into BDSIM
- Track Bunch/Halo particles
- Read in GuineaPig bunch files e.g. Pairs, Disrupted...
- Collimation Studies
- Check background levels at any point along the beam line - useful for positioning and performance checks on beam diagnostic tools
 - Already used to improve signal at PETRA Laserwire installation

Current BDSIM Developments

- Moving BDSIM to MAD-like input format
 - Read MAD decks directly without the need to produce optics format files
 - Using MAD-like files to include process flags, geometries, bunch descriptions, etc.
- Complicated Geometries (e.g. Interaction Region) can be built using MySQL database
 - Links to detector studies that use Mokka
 - Removes need to hand code complicated geometries
 - Will be possible to apply to key/specialised components such as extraction quads
- Implement Neutron processes we don't trust Geant4's!
- Looking to add sensible tracking cuts depending on regions of interest along the beam line
- Many other issues being looked at, such as beam gas

BDSIM Tracking

 BDSIM tracking has been checked against DIMAD for nominal and offset momentum - results match very closely (O.Dadoun, LAL)

Full BDS Tracking

 Tracked core and halo particles along the 20mrad BDS from exit of linac to IP

7x10⁴ Core beam events fired.

1x10⁶ Halo events fired. Only ~9x10³ reach FD

12/07/05 - J.Carter

BDS Meeting - SLAC

X [m]

Full BDS Tracking

Check collimation before and after spoilers: (all plots for Halo simulation)

Check energy collimation:

(E Cuts: 100 GeV for photons ,0.1 GeV for electrons. SR processes turned OFF)

IR Geometry Set Up

 Written a MySQL wrapper to interface to Geometry databases used by Mokka (Using OFFLINE SQL database dump file obtained from A. Vogel at DESY)

Can also access a locally running MySQL database

Full IR Geometry modelled in BDSIM

Using the Stahl design for L* = 4.1m

Including 4T Solenoid Field Map (from TESLA TDR)

A. Vogel, ILC-BDIR June 2005

Short Doublet Set Up

All simulations run with the following:

1.6mrad crossing angle

Charged Particle Cut: 10 keV & Photon Cut: 1 keV

(over exaggerated for illustration purposes!)

	Strength	Pole tip Field Strength [T]	Length [m]	Aperture Radius [mm]
L*	ı	4T Field Map	4.100	≥12
QD0	K1=-0.137	8.0	1.924	70
Drift1/3	1	-	0.250	95
SD1	K2=0.672	5.5	4.250	95
Drift2/4	ı	-	4.500	95
QF1	K1=0.08394	1.4	1.015	10

Pairs Backgrounds

- Using Guinea-Pig produced pairs based on the WG1 1TeV Nominal for 1bx
 - Incoherent Pairs
 - N = 133642
 - <E> = 6.743 GeV

Twice as much energy than

for NO solenoid!!

12/07/05 - J.Carter

Radiative Bhabhas

$$N = 1.86 \times 10^6$$

$$<$$
E $> = 394.6 GeV$

- Power into QD0 ~ 1.7W
- Power into SD1 ~ 6.9W(to be checked...)

Note: No mask in place

BDS Meeting - SLAC

Halo Generation at the IP

- Use BDSIM to trace back the halo profile needed at the final doublet in order to produce the ILC collimation depth requirements.
- Fire this profile back through the final doublet with synchrotron radiation processes turned on

Can be done in one go using an inverted final doublet

Conclusions and Outlook

- BDSIM
 - Good tool for providing tracking and secondary production
 - Next release of BDSIM planned in the near future
- Collimation Issues currently being investigated
- Look at both Long and Short doublets?
- Extraction line backgrounds can be looked at in depth
 - Need to introduce some optimised energy cut and shower propagation methods
 - Full field maps can be implemented
- 20mrad IR set up being implemented
- Open to suggestions for any other studies needed....