Planning for Jan 2009 9mA studies

John Carwardine Jan 5th, 2009

January 9mA studies

Main goals

- What can we learn about the beam losses in the dump line?
- LLRF studies: feed-forward, feedback gain studies
- RF studies: cavity field stability for long pulses
- Gradient studies: increase ACC456 to quench (or other limits)

Operating conditions

- Maximum charge per pulse: 30nC (nominal)
- Try to get 3nC operation with 10 bunches, else 1nC with 30 bunches. Low rep rate (40kHz)
- Long RF flat top (800us)
- 700MeV in 1st shift, increase ACC456 during 2nd shift

Shift #1 (Jan 11/12, 15:00-07:00)

Proposed outline

	Primary study	Lead studiers
15:00	 In parallel: Set up ACC1, ACC23, ACC456 (800us flat-tops) Try to reproduce 3nC setup from Sept run, else set up 1nC operation 	AyvazyanSiggi?
	Transport beam through bypass to dump (either 10x 3nC or 30x 1nC, 40kHz rep rate)	FLASH expert?
~21:00	Preliminary tests of new FF algorithm at ACC456	Ayvazyan
~23:00	Characterize dump line beam losses, see if we can affect losses by changing correctors, quads, Measure energy and physical aperture. Test response of new cerenkov blms,	Carwardine, Walker
07:00	End of Shift	

Shift #2 (Jan 14/15, 15:00-07:00)

Proposed outline

	Primary study	Lead studiers
15:00	Try to increase feedback gain. Characterize energy stability vs feedback gain vs pulse length with beam. Correct 250kHz ripple,	Ayvazyan, Cancelo, Michizono
~21:00	Push the gradients in ACC456 with beam. Find gradient limits, measure quench signatures, test quench detection, check coupler powers,	Ayvazyan, Cancelo, Michizono
~03:00	No-beam open-loop measurements. Measure stability of ACC456 cavity fields, with long pulses for different gradients, different pre-detunings,	(Pei), Walker, (Adolphsen),
07:00	End of Shift	

Other possible studies / tasks

- Test MPS interface to LLRF systems to terminate LLRF control on beam trip.
- Test Simcon DSP based control at ACC456
- Investigate fast transients in vector sum that appear in DAQ data (parallel study)
- Understand RF waveforms, calibrations, compare
 DOOCS and DAQ waveforms, etc (partial parallel study)
- Commission 3MHz gun operation
- Test 3MHz trigger to laser
- ...other?

RF studies: cavity field stability

- Continuation of previous study... (Pei, Adolphsen)
- Validate our analyses of previous datasets, eg
 - Can we verify that LFD is the cause of the end-of-pulse instabilities?
 - Can we find an 'optimum' pre-detuning?
 - RF power overhead measurements
- Should use DAQ data for data analysis this time.
- (We need detailed list of studies and measurements)

Beam loss studies / Dump line characterization

- Measure energy / physical aperture of dump line, compare with expected values from model
- Grab a corrector and see if we can change the beam loss signatures
- Can we tell when we're in the center of the beam pipe?
- What's the effect on losses and dump temperature / temperature profile of changing the defocusing quads and rotator magnets?
- Can we tell how big the beam is at the dump?
- What do we learn from the new cerenkov loss monitor?
- Dark current issues
- Presence of copper window may make these studies difficult.
- Studies should result in quantitative measurements.

"Quick" simulation of dose from shower of 1nC @ 700MeV through 2mm copper window

Dose (GeV/g/primary electron)

- Multiply by 1000 to get the dose distribution in Gy 1m downstream of the window.
- Even in the lowest bins of the plot show 1e-5 Gy per bunch or 4 Gy/day

Lars Fröhlich

Personnel

- FLASH experts: Ayvazyan, Grecki, Schreiber, Walker, (who?),...
- Visitors: Carwardine, Cancelo, Davidsaver, Michizono, Matsumoto
- Remote: Pei, Adolphsen, Chase, Dong

Notes

- We keep good notes in the elog, especially to time-stamp interesting times for analysis and to record appropriate information
- Studiers: please provide specific information on studies and measurements to be taken:
 - Beam loss studies
 - RF measurements
- Brief follow-up meeting on Friday (time to be announced)