

ILD Workshop - CERN - 20 January 2009

Parametric Model for Yoke + Coil

A. Hervé/ETH Zürich @ CERN

Alain Hervé, ILD Workshop, ILD-T-Coil&Yoke-Parametric-Model-4360, CERN-20 January 2009

Parametric Model for Coil+Yoke

Definition of Main Parameters

- B0: Central Induction
- RfreeBore: Inner Radius of Vac tank
- theta: Distribution Barrel/Endcap
- BmeanSat: Mean Saturation of Iron in Central Plane
- kflux: Fraction of Flux crossing Endcap at RoutWinding
- Ngone: Yoke number of sides of polygon
- E/M: Ratio of Magnetic Stored Energy per kg of Cold Mass

Temperature distribution in CMS coil during a fast dump with 50% extraction and E/M=12kJ/kg

B₀ and r do not appear in the Formula

$$\frac{E}{M} = \alpha \frac{Y}{2\rho} \epsilon$$

0.6 in CMS conductor < 1

- Neither B_0 nor r appear in the formula! \Rightarrow When increasing B_0 or r more material has to be added to maintain E/M at the same value of 12 kJ/kg.
- \Rightarrow This material is available to limit the strain at 0.15%, or less if α can be increased.

Thus there is nothing magic with B₀ or r!

However, B₀ and r are not without influence on difficulties and cost! Not forgetting the cost of the return yoke if one wants to limit the stray field!

Radial gaps in Coil System

Waiting for new engineering studies at Saclay, I have assumed the same gaps as for CMS.

They are by no means exaggerated, but they can certainly be slightly decreased for a shorter coil.

Alain Hervé, ILD Workshop, ILD-T-Coil&Yoke-Parametric-Model-4360, CERN-20 January 2009

Radial gaps in Coil System

Z gaps in Coil System

Z gaps in Coil System

For exemple here: 4T and RfreeBore=3440mm 1/2LBarrel= 3.992 m (ILD0)

Status	Input	Name	Output	Unit	Comment
					Simulation of ILD 4T/3.44m/4m 17 January 2009
	4	B0		Т	Central field
	3,44	RfreeBore	1	m	IVT inner radius
	41,2903511	θ		deg	Tan(θ)=RfreeBore/LoutOVT
	12	Eo∨erM		kJ/kg	Specific magnetic energy=>Temperature after Dump
	2	BsatBarrel		Τ	Mean saturation in central plane of Barrel Yoke
	,712	coefFlux		-	percentage of Flux going through Endcap
T I	12	Ngone			Number of sides for Barrel yoke
	3	Parameter and	1		

Parameters adjusted to get the yoke thicknesses of ILD0

Parametric Model for ILD-Results-II

	Routl∨t	3500	mm	IVT outer radius
	RinCoil	3627,5	mm	Coil inner radius +50 mm
	RoutWinding	3930,1	mm	Winding outer radius
	RoutCoil	3980,1	mm	Coil outer radius +50 mm
	RinO∨t	4244,6	mm	OVT inner radius
	RoutO∨t	4294,6	mm	OVT outer radius +100 mm
	RinBarrel	4444,6	mm	Yoke inner radius
	ThIroninBarrel	2390,3	mm	Thickness of iron in Barrel +100 mm
	ThBarrel	2790,3	mm	Thickness of Barrel Yoke
	RoutBarrel	7235	mm	Outer radius of Barrel on flats +100 mm
	LoutOVT	3917	mm	Half outer length of OVT
	LCoil	3667	mm	Half length of coil
\langle	LBarrel	3992	mm	Half length of Barrel
	ZbeginEndcap	4042	mm	Start iron for Endcap
	ThIroninEndcap	2588,3	mm	Thickness of iron in Endcap
	ThEndcap	3088,3	mm	Thickness of Endcap
	ZendEndcap	7130,3	mm	Stop iron for Endcap
	3.	а. С	б.	

Parametric Model for ILD-Results-III

ThWinding	302,6	mm	Thickness of Winding
ThCoil	352,6	mm	Coil thickness (Winding + Mandrel)
Flux	179,54	Wb	Flux
StoredEnergy	2,04	GJ	Stored Magnetic Energy
MassCoil	170	t	Mass of the coil including mandrel
MassBarrel	5520	t	Mass of Barrel
MassOneEndcap	3398	t	Mass of one Endcap
MassYoke	12316	t	Mass of Yoke = Barrel + 2*Endcaps

Parametric Model for ILD-Results-IV

status	Input	Name	Output	Unit	Comment
	3,5	PriceIronperKg		Euro	unit price of iron yoke including assy: 2000 prices
		PriceYoke	43,1	MEuro	2000 price of Yoke Structure, including assembly
		PriceYokeAncillaries	8,5	MEuro	2000 price of Yoke ancillaries and moving system
6		PriceCoil	37,6	MEuro	2000 price of Coil + VT plus all ancillaries
		overCostSiteWinding	4,8	MEuro	=>Site winding if RoutCoil > 3.5 m
		TotalCost2000	94	MEuro	2000 price of Magnet System
	10	CumulativeInflation		%	cumulative inflation since 2000
		TotalCostActualized	103,4	MEuro	Actual Cost of Magnet System

Mass of Yoke in tonnes

Total Cost of Magnet System in M€

 B_0 in T

Thickness of Winding (in mm)

 The only parameter to watch is the non negligible increase of current in the side modules to better homogeneity.

As mentioned by Kircher, to respect both E/M and strain in these modules without increasing the coil thickness, the use of the upgraded conductor proposed by CMS two years ago, is mandatory

 It is thus important to launch the industrial R&D development program proposed already one year ago by CERN, Saclay and Genova, to replace pure aluminum by "Yamamoto's alloy".

- There is large penalty in cost to increase RfreeBore
- There is another one to increase B0, and technical difficulties for the coil are increased for B0 > 4T
- A heavy yoke brings further penalties in logistics in particular in the push-pull scenario
- The increase of current in the side modules to better homogeneity needs to be confirmed by the R&D program
- Otherwise I find the ILD choice (3.5 -- 4T, 3440mm) a good choice