Optimization of Protection Collimators

Mikhail Kostin June 7, 2005

Quadrupole Life Time

- L(PC1) = 21.45 cm
- $P_{y} = 7.67 \pm 0.34 \text{ mSv/hr}$
- Peak absorbed dose in quad coils ~300 MGy/yr (averaged over 2 cm)
- Max absorbed dose 4 MGy (for proton machines)
- Coil life time is ~3 days

Energy Deposition in Solid Copper

ED in Solid Copper

- In <u>solid</u> copper, 3 orders of magnitude difference among the energy deposition in first cm (something like the spoiler SP2) and maximum of EM showers (12-16 cm from front surface)
- Looking for 3 orders of magnitude in dose reduction (τ =40 years)
- 10 cm of copper provides dose reduction of an order of magnitude
- Protection collimators should be at least 50 cm long
- The protection collimators are not solid, add more length

- Dynamic heat load ~50 W/m for SP2, SP4 and SPEX and ~1.0e4 for PC1, PC5, PC8 and PC9
- The above numbers are consistent with those for solid copper
 - Ionization losses for spoilers, EM showers for PC

ED in Quad (downstream of PC1)

- Dose reduction is smaller than in solid Cu
- 14 years of life time with PC1 60 cm (2.0e+7 sec/yr)
- PC1 shadow is seen

Survivability of Collimators

- Factors that affect the survivability
 - Temperature (relatively slow, specific time 1 msec)
 - Stress. Very fast (speed of sound).
- Normally, one uses ANSYS for stress calculations. Use magic numbers instead for cm scale objects (600 J/g for Cu, 1000 J/g for C, Inconel, Ni)
- Use 1 train for temperature studies
- Assume that there is no temperature build-up, i.e. 0.2 sec between the trains is long enough to cool the collimators down (might be true enough with active cooling)

ED and T Rise in SP2

 $ED_{max} = 1.366 \pm 0.030 \text{ J/g/1 train}$

$$\Delta T_{\text{max}} = 1.951 \pm 0.042 \text{ K}$$

The specific heat is a non-linear function of T

ED and T Rise in PC1 (shower max)

$$ED_{max} = 4.672 \pm 0.003 \text{ J/g/1 train}$$

$$\Delta T_{\text{max}} = 6.615 \pm 0.005 \text{ K}$$

Conclusions

- Protection collimators should be ~60 cm long
- Previous results on the dynamic heat load are consistent with the new calculations
 - $-\sim 50$ W/m in SP2, SP4 and SPEX (dE/dx)
 - $\sim 1.0e + 4$ W/m in PC (EM showers)
- Temperature and stress in collimators should not be a problem

