DHCAL Meeting 20/01/09

GRPC development in Lyon

Overview

- Part 1 technology choices
- Part 2 constructed chambers and problems encountered

Part 1: Technology

- Technology drivers
 - Minimize dead zones
 - Closed chamber design no external gastight box
 - Reduce area of spacers inside gas volume
 - Low cost
 - Scaleable to 2500 m² of detector
 - Semi-industrialized production possible

GRPCs 'Lyonnaise' – technology (1)

GRPCs 'Lyonnaise' – technology (2)

□ Two types of chamber:

- Standard' chamber
 - □ Frame in G10, thickness 1.2 mm, width 3 mm
 - □ `Channelled' gas distribution `fishing line' (PMMA)
- Capillary' chamber
 - □ Capillary tube frame 1.2 x 0.8 mm
 - Frame used to distribute gas (0.3 mm holes drilled in capillary walls)
 - □ Advantage: reduction of dead zones
- Support between glass planes:
 - Ceramic balls diam. 1.2 +/- 0.02 mm
 - Distance between balls optimized (ANSYS): 100 mm (max. deformation 44 µ – 81 balls / m2)

Simulation – gas circulation in standard chamber

Simulation – gas circulation in capillary chamber

Resistive layer

- Application:
 - Statguard: paint roller
 - Graphite / Licron: aerosol
- Quality control:
 - Surface quality: visual inspection
 - Electrical continuity / voltage distribution
 - Homogenity: measure ρ_s

Connections HV / ground

Part 2: Constructed chambers

- □ Three chambers 1m x 1m produced:
 - 2 x "Licron" chambers
 - 1 x "Statguard" chamber
 - All with standard gas distribution
- Construction steps:
 - Clean glass and cover with resistive cloating
 - Glue micro-balls, frame, gas spacers and capillary tubes to cathode glass on gluing table
 - Add glue to upper surfaces of balls and gas spacers
 - Turn table to vertical position
 - Introduce anode glass
 - Turn table to horizontal position
 - Add weights to anode glass and wait for glue to dry
 - Deposit glue lines between glass and frame to make gas-tight
 - Glue 6mm gas connectors to capillaries and solder HV connectons
 - Transfer to honeycomb support

Gluing table

Gluing the gas channel spacers

Statguard chamber + Honeycomb Support

Vacuum pick-up system

Large area read-out

144 ASICS/m2 \rightarrow 9472 channels/m2 (chamber is underneath!) There that there a series the the the the 1 date 1 fate 1 fate 1 fate 1 fate 1 fat di at 1 fat 1 fat 1 fat 1/1 and 1 date y at 1 date 1 dat 1 dat 1 date 1 date Jafi 1 Jaf: 1 Jafi 1.6.1 Stainless steel PCB support (CEIMAT)

Problems encountered

- Gas tightness
- □ HV connection reliability
- Statguard resistivity

Gas tightness

- First chambers inflated under gas pressure!
- Glue failure caused balls to become detached from upper glass
- □ Subequent failure of glue around perimeter
 → gas leaks
- □ Over-pressure in chamber not excessive $(\Delta p_{exit} \sim 2.5 \text{ mbar } \equiv 250 \text{ g} / \text{ ball max.})$

Glue test

- Usual glue two-component epoxy AY103 + HY951: <u>2.7g/cm2</u>
- Dow Corning RTV Silicone 3140: <u>5.0g/cm2</u>
- Araldite epoxy 2011 / 2012: <u>108 g/cm2</u>

HV connections

- Recurring problem loss of HV connection on Licron chambers
- Apparent thinning of Licron layer near the copper strip glued to the glass
- Occurred using:
 - Copper Scotch with conductive adhesive
 - Copper strips glued with silver-loaded varnish
 - Loss of electrical contact after just a few days
- Solutions found:
 - Graphite Scotch
 - Epotek EE129 conductive epoxy
- Long-term reliability unknown

Statguard resistivity (1)

- Commercial product used for ESD protection of floor surfaces
- Potential to silk-screen print onto glass
- Relatively inexpensive
- □ Good surface finish
- Small chamber in Nov. 08 test beam performed reasonably well (efficiency, multiplicity) → see Keiffer talk
- □ 1m2 Statguard chamber in same test beam had static build-up problem \rightarrow damage to HARDROCs
- Thought to be caused by very high Statguard resistivity (~500M Ω / \Box)
- □ Static accumulation much less for 1m2 Licron chambers (~20 M Ω / \Box)

Statguard resistivity (2)

- Resistivity not easily controllable:
 - Varies from 10 MΩ/□ to >500 MΩ/□ for no apparent reason
 - Same glass cleaning procedure
 - Same method of deposition (roller)
 - Same number of layers and approximate layer thickness
- Recent tests indicate roller may be to blame
- Consistent results (~25 M Ω / \Box for 1 coat) with paint brush or skimmer

Current status and future plans

- Three 1m2 chambers have been built
- One of these under volts and taking data for several weeks in the lab
- □ Short-term plans
 - Investigate other resistive coatings (colloidal graphite, 'Isovic', ...)
 - Read out whole surface with large PCBs
 - Characterize whole surface
- Longer-term
 - Move to dedicated construction / testing facility
 - Industrialization of construction: silk screen printing, glue robot, vacuum picking,...
 - Optimization of gas distribution, gas re-cycling
 - Study of mechanical integration issues