DEPFET Test Beam

Julia Furletova

Bonn University

Outline

- Setup/DAQ
- Results
- Plans

Setup at CERN

DEPFET Telescope

CERN SPS 120 GeV pions

EUDET Telescope + DEPFET DUT

03.03.2009, Julia Furletova

JRA1 Meeting, Strasbourg

DEPFET Telescope

- → table with DEPFET telescope consisting of 6 modules, mounted on X-Y motor stages
- → 2 readout PC with 3 DEPFET modules per PC, connected via USB2.0 in the test beam area in distance of max. 4 meters from the modules.
- Windows PC to control & X-Y motor stages, with USB2.0 connection to controller.
- → Trigger Logic Unit (TLU) connected to one of readout PC via USB2.0
- → all PC are connected to IGB ethernet HUB

· Control Room:

- → one DAQ server rack mounted server PC: Intel \$5000, 8 CPU, 4GB memory, hot swap SATA RAID with 1.5 TByte disk space - total 6 disks.
- → working PC : Run Control, DQM, etc....
- all PC also connected to local ethernet HUB
- → both HUBs are connected by 30m ethernet cable, from test beam area to control room

EUDET Telescope

Test Beam Area:

→ 6 EUDET Modules (Monolitic active pixel sensors MAPS 7.7x7x7mm²)

→ MVME6100 PowerPC computer with general purpose acquisition boards (EUDRB) inside the VME64x crate connected to IGB ethernet HUB <

- > Trigger Logic Unit (TLU)
- > DEPFET DUT with Readout PC

Control Room:

> EUDET DAQ server on MACPC IGB ethernet HUB

DEPFET Data Acquisition System

- · original Depfet DAQ is based on Windows $^{\text{TM}}$ and running on a single PC
- in order to improve functionality during the test beam measurements a newer version of the DAQ software was implemented
- new DAQ is based on Linux network distributed client/server architecture which allows:
 - share resources and tasks; easy scale the system; remote control and monitoring; easy integration of other detectors
- DAQ uses USB 2.0 for data transfer from DEPFET R/O board to PC and TCP/IP to send data to Event Builder.

DEPFET data reconstructed with EuTelescope

DEPFET data reconstructed with ILC EuTelescope software •LCIO file •ROOT file with histograms

Seed and Clusters

Pedestal and Noise

With hit rejection and row wise common mode correction

Millepede alignment (Run 1277 DEPFET telescope)
Before alignment
After alignment

Tracking (run1273) 120GeV (preliminary)

Module 7

X: 2.23±0.02µm Y: 2.19±0.02µm

Module 5

X: 2.20±0.02µm Y: 3.07±0.02µm

Module 6 (Prague)

X: 2.43±0.02µm Y: 2.20±0.02µm

Module II (Munich)

X: 2.23±0.02µm Y: 2.07±0.02µm

Module 14

X: 1.79±0.02μm Y: 1.76±0.02μm

Module 2

X: 1.91±0.02µm Y: 1.86±0.02µm

Beam energy scan (first results)

Residual X

Residual Y

20GeV(run1294)

X: 3,5±0.2µm

Y: 3.5±0.2µm

60GeV(run1280)

X: 2.59±0.08µm

Y:2.70±0.08µm

80GeV(run1277)

X: 1.90±0.03µm

Y:1.85±0.03µm

120GeV (run1273)

X: 1.91±0.02µm

Y:1.86±0.02µm

03.03.2009, Julia Furletova

Angular scan (Module 6)
18° XY RAW (Mod6) XY RAW (Mod6) XY RAW (Mod6) ₹120 ≹120 [출120 100 100 80 82 20 Cluster Size 3x3, 5x5 (Mod6) Mean 4.644 RMS 1.809 30 20 [col] Cluster Size 3x3, 5x5 (Mod6) HClusterSize96 5.082 80000 F 1.32 60 [cof] 70000 60000 ster Size 3x3, 5x5 (Mod6) 50000 Cluster Size 3x3, 5x5 (Mod6) 40000 [Cluster size] 30000 1.863 20000 10000 600 [Cluster size] 200 03.03.2009, Julia Furletova ourg [Cluster size] [Cluster size]

EUDET Telescope + DEPFET DUT

- · Compatibility of EUDAQ with 64bit Linux done;
- •Marlin+EuTelescope software were compiled on the 64bit Linux server in Bonn

```
SET( CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -m32" )
```

- EuTelescope (see Antonio's talk):
 - -"NativeReader" (processor for reading out a different types of a different detectors raw data) are done;
 - update in "PedestalNoiseProcessor", "CalibrateEventProcessor"
 - -DEPFET data are reconstructed upto level of 'hits'

Next Test Beam (summer 2009)

I Week as DUT with EUDET Telescope + I week DEPFET Telescope DEPFET Matrix:

- > New S3B System with a new Switcher 3 for matrixes upto 128x128 (old one S3A System with Switcher 2 for 64x128 matrixes)
- > update of readout software and Data Quality Monitor for the use of 128x128 matrixes (and also mix of the different types of systems S3A and S3B)
- > change of data format (update of the DEPFET producer in EUDET DAQ is required) : reduce twice an event size

New Power Supplies (Johannes Schneider): small, computer controlled.

Conclusion

• DEPFET Telescope Test Beam Setup:

- → Operated 6 layers DEPFET telescope
- → Stable data taking with new Linux DAQ system (rate -20 GB/hour with a readout rate -220Hz)
- → Collected ~ 20 millions events for analysis (~4TB raw data)
- → preliminary data analysis with ILC/EUDET software:
- 6modules track fit residuals 2 µm
- ✓ signal to noise ratio ~130

• DEPFET DUT with EUDET Telescope:

- → DEPFET DAQ has been successfully integrated to EUDET readout system
- → Collected ~ 2 millions events
- → Data analysis are ongoing

