Benchmark Reactions for the LOIs

- Study of Higgs Recoil Reaction $ee \rightarrow HZ \rightarrow l^+l^-$ -

Roman Pöschl
LAL Orsay

Linear Collider Workshop LCWA09 Albuquerque NM Sept./Oct. 2009

Thanks to T. Barklow, H. Li and G. Tassielli for helping to prepare the talk

References: LOIs by SiD, ILD and 4th Concept + IDAG answer documents
PREL-LC-PHSIM-2009-003
Higgs-strahlung Process

\[h \rightarrow \ell^+ \ell^- \]

Decay leptons from Z
\(\mu \) Pairs, e pairs

Higgs Mass and ZZH coupling by \textbf{Model Independent} measurement

Higgs Recoil Mass:
\[M_h^2 = M_{\text{recoil}}^2 = s + M_Z^2 - 2E_Z\sqrt{s} \]

Benchmark Parameters:

\(\sqrt{s} = 250 \text{ GeV} \) – fairly close to HZ threshold
Luminosity 500 fb\(^{-1}\) shared equally between different Beam Polarisation modes:

- \(e^- e^+ : \) \(P_e^- = -80\% \) \(P_e^+ = +30\% \)
- \(e^- e^+ : \) \(P_e^- = +80\% \) \(P_e^+ = -30\% \)

Incoming Beam by GUINEA PIG
Beam Energy Spread 0.18\% for \(e^+ \) and 0.28\% for \(e^- \)
Beam Strahlung in agreement with Yokoya-Chen formula

Results will be given w/o crossing angle of 14mrad!!!
(Main) Background Processes

Boson Pair Production

Example for $e_R^- e_L^+$ Polarisation Mode

Enormous Background $\frac{\sigma_{\text{signal}}}{\sigma_{\text{bkgr.}}} \approx 0$

LCWA09 Albuquerque NM
Proposed Detector Concepts

SID

Compact Detector with Silicon (Central) Tracking

Calorimeter optimised for Particle Flow

*All units are in cm

ILD

Larger Volume with Gaseous Tracking (TPC)

Tracking with small cell He Drift Chamber

Xtal Calorimeter Dual Readout

4th

LCWA09 Albuquerque NM
Signal Selection in ILD – Using Calorimetric Information

Muon Channel

\[E = \frac{N_{\text{true} \cap \text{iden}}}{N_{\text{true}}} = 0.976 \]

\[P = \frac{N_{\text{true} \cap \text{iden}}}{N_{\text{iden}}} = 0.914 \]

Electron Channel

\[E = \frac{N_{\text{true} \cap \text{iden}}}{N_{\text{true}}} = 0.963 \]

\[P = \frac{N_{\text{true} \cap \text{iden}}}{N_{\text{iden}}} = 0.961 \]
Signal Selection in ILD - Track Selection

Signal consists of two oppositely Charged Tracks

Electron Channel

Track Resolution:

\[
\frac{\Delta P}{P^2} = 2.5 \times 10^{-5} \oplus 8 \times 10^{-4} \frac{1}{P}
\]

End Caps \(|\cos \theta| > 0.78\)

TrackRejected if:

\[
\frac{\Delta P}{P^2} > 5 \times 10^{-4}
\]

Barrel Region

Track Resolution:

\[
c(P) = \frac{\Delta P}{P^2} = 2.5 \times 10^{-5} \oplus 8 \times 10^{-4} \frac{1}{P}
\]

Track Rejected if:

\[
\frac{\Delta P}{P^2} > 2 \cdot c(P)
\]
Background Rejection

SiD

- Very tight constraint on Z-Mass for dilepton system

ILD

\[87 < M_{dl} < 95 \text{ GeV} \]
\[|\cos \theta_{l+}|, |\cos \theta_{l-}| < 0.99 \]
\[|\cos \theta_{dl}| < 0.85 \]
\[|\cos \theta_{\text{miss.}}| < 0.99 \]
\[P_{T,dl} > 20 \text{ GeV} \]
\[80 < M_{dl-} < 100 \text{ GeV} \]
\[0.2 < \text{acop} < 3.0 \]
\[\Delta P_{T_{\text{bal.}}} > 10 \text{ GeV} \]
\[|\cos \theta_{\text{miss.}}| < 0.99 \]
\[115 < M_{\text{recoil}} < 150 \text{ GeV} \]
Dedicated cuts for radiative events
Multivariate Analysis

- Relaxed constraint on dilepton Mass
- Cuts more closely 'tailored' to background

Signal/Background > 30%

Remaining background: Boson Pair Production
Bhabha Background

4th

\[72 < M_{dl} < 110 \text{ GeV} \]
\[102 < M_{\text{recoil}} < 168 \text{ GeV} \]
\[|\cos \theta_{l+}|, |\cos \theta_{l-}| < 0.98 \]
\[P_{T,\text{max}} > 20 \text{ GeV} \]
\[|\cos \theta_{\text{miss.}}| < 0.99 \]
DCA for e,μ < 6mm

Particle ID by muon spectrometer and exploitation of mult r/o of Calorimeter

Additional Tracks in Default Analysis!!!
Signal and Background – Examples

Dilepton Mass in e-Channel

Radiative effects lead to widening of peak → Effort to keep these events → later

P_T Balance: Dileptons ↔ ISR γ

Efficient cut to suppress lepton pair events
Background reduction by factor 10
Extraction of Results

Results extracted without assumption on shape of spectrum

SiD

Linear Least χ^2 fit to bin contents:

$$\hat{N}_i = \hat{N}_{ibkg} + \hat{N}_{i,signal} + \frac{\hat{N}_i}{M_h}(M_h - 120 \ GeV)$$

$$\chi^2(M_h) = \sum \frac{(N_i - \hat{N}_i(M_h))^2}{s_i^2}, \ s_i = \sqrt{\hat{N}_{ibkg} + N_{isignal}}$$

- Calculated using training samples around $M_h = 120 \ GeV$

ILD

(Simplified) Kernel Estimation for signal

$$F_s(x) = \frac{1}{N} \sum_{j=1}^{m} n_j G(x; t_j; h_j)$$

- Convolution of Gaussian and Second Order Polynomial

$$h_j = \left(\frac{4}{3}\right)^{1/5} N^{-1/5} \Delta x \sqrt{\frac{N}{n_j}}$$

$$x \rightarrow x' = x - M_h$$

- Background approximated by second order polynomial

Different/Complementary methods to extract Results
Results for: $e^-_R e^+_L$: $P_{e^-} = +80\%$ $P_{e^+} = -30\%$

Muon Channel

Very Precise Measurement

Electron Channel

Less Precise Measurement

SiD

$\Delta M_h = 0.046$ GeV
$\Delta \sigma_{HZ}/\sigma_{HZ} = 0.037$

$\Delta M_h = 0.078$ GeV
$\Delta \sigma_{HZ}/\sigma_{HZ} = 0.041$

LCWA09 Albuquerque NM
Sources of Bremsstrahlung

Landscape of ILD Detector by Bremsstrahlung

Energy loss by Passive Material

Figures from PhD Thesis: H. Li (LAL)

LCWA09 Albuquerque NM 11
Bremsstrahlung Recovery

Collecting Bremsstrahlung Photons in elm. Calorimeter
Gain: Higher Statistics in Signal Region
Penalty: Worse resolution by low energetic photons $\sigma/E \sim 17%/\sqrt{E}$

Statistical Gain “beats” modest energy resolution
Bremsstrahlung Recovery in the 4th Xtal calorimeter: superb elm. energy resolution $\sigma/E \sim 3\%/\sqrt{E}$

Muon Channel

Electron Channel

$\Delta M_h = 0.05$ GeV
$\Delta M_h = 0.06$ GeV

Comparable (statistical) Precision in Electron and Muon Channel!!!
Result of emphasising the role of Calorimetry!!!?

Note: Results here for Model Dependant Analysis (Requirement of add. Charged Tracks)
Results for: $e_L^- e_R^+ : P_{e^-} = -80\% \ P_{e^+} = 30\%$

Model Dependant Analysis: Additional Tracks required

Muon Channel

<table>
<thead>
<tr>
<th>Mean</th>
<th>χ^2/ndf</th>
<th>Constant</th>
<th>M_h</th>
<th>ΔM_h</th>
<th>$\Delta \sigma_{HZ}/\sigma_{HZ}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>54.6972 / 117</td>
<td>219.253</td>
<td>120.283</td>
<td>0.06 GeV</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>0.501688 ± 0.046852</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.617285 ± 0.064140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.156632 ± 0.028496</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3002.37 ± 730.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-64.993 ± 16.667</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.480376 ± 0.125756</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.00119536 ± 0.00031422</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electron Channel

<table>
<thead>
<tr>
<th>Mean</th>
<th>χ^2/ndf</th>
<th>Constant</th>
<th>M_h</th>
<th>ΔM_h</th>
<th>$\Delta \sigma_{HZ}/\sigma_{HZ}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>113.9</td>
<td>34.7693 / 117</td>
<td>239.844</td>
<td>120.153</td>
<td>0.049 GeV</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.75976 ± 0.05963</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.628297 ± 0.086107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.171913 ± 0.045465</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4453.75 ± 1212.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-95.5175 ± 27.8625</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.711136 ± 0.211825</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.00178039 ± 0.000053341</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LCWA09 Albuq
\(\gamma - \text{Background} \)

Processes: \(\gamma \gamma \rightarrow e^+e^- \quad \gamma \gamma \rightarrow \mu^+\mu^- \quad \gamma \gamma \rightarrow \text{hadrons} \)

Beam Background has only little effect on recoil mass spectrum
Influence of Machine Parameters

Muon Channel

\[\Delta M_{\text{tot}} = 650 \text{ MeV} \]
\[\Delta M_{\text{mach.}} = 560 \text{ MeV} \quad \Delta M_{\text{det.}} = 330 \text{ MeV} \]

Electron Channel

\[\Delta M_{\text{tot}} = 750 \text{ MeV} \]
\[\Delta M_{\text{mach.}} = 560 \text{ MeV} \quad \Delta M_{\text{det.}} = 500 \text{ MeV} \]

Uncertainties of incoming beams are dominant source of Statistical Error (even in Electron Channel)
Shopping List beyond LOI

- Do we want/need to compare the performance of Detector Concepts?
 Agreement on common set of cuts would be helpful!

- Study of systematic errors entirely missing (Lack of time, manpower)
 Need to identify major sources of systematic errors
 Knowledge of Detector R&D needs to go into Physics Studies
 e.g. Answers to IDAG contain parameters on tracking precision
 More guidance to Detector R&D by Physics Studies!?
 Disjunct groups !!?

- Conclusions for Detector R&D from LOIs?
 LOI should lead to directions for R&D, does it?

- Feedback to change of Machine Parameters
 Need ability to ponder timely the influence of Physics Performance
Conclusions and Outlook

- Detector Concepts promise precision measurement of Higgs-strahlungs Process
 $\Delta M_h: \mathcal{O}(40 \text{ MeV})$
 $\Delta \sigma_{HZ}: < 5\%$
 Detector Layout allow for Efficient Background suppression
 \rightarrow up to Six Orders of Magnitude!!!!
 LOIs witness enormous physics potential of ILC and its Detectors!!!

- Electron Channel “suffers” from Bremsstrahlung
 Material Budgets need to be watched closely!!
 First Algorithms for recovery successfully applied!!
 Excellent Calorimetry can help!?

- Higgs Recoil mass channel is very sensitive to Beam Parameters!!!

- Systematic Effects
 Algorithms developed for LOIs allow for study of systematic errors
 e.g. via $ee \rightarrow ZZ$

- LOIs are not the end but the start
 Directions for R&D emerging from LOIs?
Tables with Quantitative Results
ILD - Model independent Analysis

<table>
<thead>
<tr>
<th>Pol.</th>
<th>Ch.</th>
<th>M_H (GeV)</th>
<th>σ (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^-_R e^+_L$</td>
<td>$\mu^+ e^- X$</td>
<td>120.006 ± 0.039</td>
<td>7.89 ± 0.28 (3.55 %)</td>
</tr>
<tr>
<td></td>
<td>$e^+ e^- X$</td>
<td>120.005 ± 0.092</td>
<td>8.46 ± 0.43 (5.08 %)</td>
</tr>
<tr>
<td></td>
<td>merged</td>
<td>120.006 ± 0.036</td>
<td>8.06 ± 0.23 (2.91 %)</td>
</tr>
<tr>
<td>$e^-_L e^+_R$</td>
<td>$\mu^+ e^- X$</td>
<td>120.008 ± 0.037</td>
<td>11.70 ± 0.39 (3.33 %)</td>
</tr>
<tr>
<td></td>
<td>$e^+ e^- X$</td>
<td>119.998 ± 0.085</td>
<td>12.61 ± 0.62 (4.92 %)</td>
</tr>
<tr>
<td></td>
<td>merged</td>
<td>120.006 ± 0.034</td>
<td>11.96 ± 0.33 (2.76 %)</td>
</tr>
</tbody>
</table>

Table 13: Resulting Higgs mass M_H and cross section σ of the MI Analysis using Kernel Estimation.

For details and further results using alternative fit methods and a Model Dependant Analysis, see PREL-LC-PHSIM-2009-003
SiD - Model independent Analysis

<table>
<thead>
<tr>
<th>80eR lumi</th>
<th>80eL lumi</th>
<th>Mode</th>
<th>ΔM_H (GeV)</th>
<th>$\Delta \sigma_{ZH} / \sigma_{ZH}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 fb⁻¹</td>
<td>0 fb⁻¹</td>
<td>e^+e^-H</td>
<td>0.078</td>
<td>0.041</td>
</tr>
<tr>
<td>250 fb⁻¹</td>
<td>0 fb⁻¹</td>
<td>$\mu^+\mu^-H$</td>
<td>0.046</td>
<td>0.037</td>
</tr>
<tr>
<td>250 fb⁻¹</td>
<td>0 fb⁻¹</td>
<td>$e^+e^-H + \mu^+\mu^-H$</td>
<td>0.040</td>
<td>0.027</td>
</tr>
<tr>
<td>0 fb⁻¹</td>
<td>250 fb⁻¹</td>
<td>e^+e^-H</td>
<td>0.066</td>
<td>0.067</td>
</tr>
<tr>
<td>0 fb⁻¹</td>
<td>250 fb⁻¹</td>
<td>$\mu^+\mu^-H$</td>
<td>0.037</td>
<td>0.057</td>
</tr>
<tr>
<td>0 fb⁻¹</td>
<td>250 fb⁻¹</td>
<td>$e^+e^-H + \mu^+\mu^-H$</td>
<td>0.032</td>
<td>0.043</td>
</tr>
</tbody>
</table>

Source: Tim Barklow, e-mail of 28/9/09

W.r.t. LOI and LOI update for IDAG:
Correction for 14mrad crossing angle included
<table>
<thead>
<tr>
<th></th>
<th>Mass</th>
<th>StError</th>
<th>sigma</th>
<th>StError</th>
</tr>
</thead>
<tbody>
<tr>
<td>mumu</td>
<td>120.28</td>
<td>0.05</td>
<td>0.69</td>
<td>0.05</td>
</tr>
<tr>
<td>5 trk: ee</td>
<td>120.47</td>
<td>0.10</td>
<td>0.83</td>
<td>0.09</td>
</tr>
<tr>
<td>ee+Cal</td>
<td>120.15</td>
<td>0.06</td>
<td>0.76</td>
<td>0.06</td>
</tr>
<tr>
<td>mumu</td>
<td>120.24</td>
<td>0.06</td>
<td>0.61</td>
<td>0.05</td>
</tr>
<tr>
<td>MI: ee</td>
<td>120.51</td>
<td>0.41</td>
<td>0.81</td>
<td>0.39</td>
</tr>
<tr>
<td>ee+Cal</td>
<td>120.16</td>
<td>0.24</td>
<td>0.73</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Mail by Giovanni Tassielli 26/09/09