Precision Measurements at the ILC

Iain Stewart MIT

Linear Collider Workshop of the Americas, Albuquerque, Sept 2009

The ILC is being designed with precision measurements in mind.

- Standard Model:

Higgs mass \& couplings, Precision electroweak, Weak boson couplings, $\alpha_{s}(Q)$ Top Width, m_{t}, top couplings, . . .

- Beyond the SM:

The most exciting precision measurements are of the mass and couplings of particles we have not yet seen. In this regard the ILC is crucial to decipher the new physics we "plan" to observed at the LHC.

This talk is not a review of all possible precision measurements.
Rather I will focus in detail on two:

$$
\alpha_{s}(Q) \text { and } m_{t} \quad \text { from } e^{+} e^{-} \text {Colliders }
$$

Measure $\alpha_{s}(Q)$ and m_{t} from $e^{+} e^{-}$colliders

Using:

- $e^{+} e^{-} \rightarrow$ jets, event shape measurements of $\alpha_{s}\left(m_{Z}\right)$
- $e^{+} e^{-} \rightarrow t \bar{t}$ at threshold $Q \simeq 2 m_{t}$
- $e^{+} e^{-} \rightarrow t \bar{t}$ above threshold $Q>2 m_{t}$
- Discuss recent theoretical advances in QCD that have an impact on precision physics at the ILC:
i) fixed order computations,
ii) resummation,
iii) improved theoretical framework for computations *Factorization \& Soft-Collinear Effective Theory (SCET)

$\alpha_{s}(Q)$

Motivation

- $\alpha_{s}\left(m_{Z}\right)$ enters the analysis of all collider data (LHC, ILC, ...)
- It also plays a role in searches for new physics
- indirectly in precision electroweak analyses, $\mathrm{B} \rightarrow X_{s} \gamma$, etc.
- directly through the unification of couplings:

Event Shapes are a classic method for determining $\alpha_{s}\left(m_{Z}\right)$

LEP 2 jet event

OPAL 3 jet event

SLD 3 jet event

Three jet events are proportional to α_{s}, good sensitivity

LEP era Results $e^{+} e^{-}$ event shapes

- theory errors dominate

 no longer true!
- fit for each Q

theoretical advances make a rigorous GLOBAL FIT possible
S. Bethke's Review 2006

Process	$\begin{gathered} \mathrm{Q} \\ {[\mathrm{GeV}]} \end{gathered}$	$\alpha_{s}(Q)$	$\alpha_{s}\left(M_{Z^{0}}\right)$	$\begin{aligned} & \Delta \alpha \\ & \exp . \end{aligned}$	$\begin{aligned} & \left.\hline \mathrm{Z}_{\mathrm{Z}^{0}}\right) \\ & \text { theor. } \end{aligned}$	Theory	refs.
DIS [pol. SF]	0.7-8		$0.113{ }_{-0.008}^{+0.010}$	± 0.004	${ }_{-0.006}^{+0.009}$	NLO	[76]
DIS [Bj-SR]	1.58	$0.375{ }_{-0.081}^{+0.062}$	$0.121{ }_{-0.009}^{+0.005}$	-	-	NNLO	[77]
DIS [GLS-SR]	1.73	$0.280{ }_{-0.068}^{+0.070}$	$0.112{ }_{-0.012}^{+0.009}$	${ }_{-0.010}^{+0.008}$	0.005	NNLO	[78]
τ-decays	1.78	0.345 ± 0.010	0.1215 ± 0.0012	0.0004	0.0011	NNLO	[70]
$\overline{\mathrm{DIS}[\nu ; ~} \mathrm{xF}_{3}$]	2.8-11		$0.119{ }_{-0.006}^{+0.007}$	0.005	${ }_{-0.003}^{+0.005}$	NNLO	[79]
DIS $\left[\mathrm{e} / \mu ; \mathrm{F}_{2}\right]$	2-15		0.1166 ± 0.0022	0.0009	0.0020	NNLO	[80, 81]
DIS [e-p \rightarrow jets]	6-100		0.1186 ± 0.0051	0.0011	0.0050	NLO	[67]
Υ decays	4.75	0.217 ± 0.021	0.118 ± 0.006	-	-	NNLO	[82]
$\underline{\mathrm{Q} \overline{\mathrm{Q}} \text { states }}$	7.5	0.1886 ± 0.0032	0.1170 ± 0.0012	0.0000	0.0012	LGT	[73]
$\mathrm{e}^{+} \mathrm{e}^{-}\left[\mathrm{F}_{2}^{\gamma}\right]$	1.4-28		$0.1198{ }_{-0.0054}^{+0.0044}$	0.0028	[0.00034	NLO	[83]
$\mathrm{e}^{+} \mathrm{e}^{-}\left[\sigma_{\text {had }}\right]$	10.52	0.20 ± 0.06	$0.130{ }_{-0.029}^{+0.021}$	(0.002	NNLO	[84]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	14.0	$0.170{ }_{-0.017}^{+0.021}$	$0.120{ }_{-0.008}^{+0.010}$	0.002	${ }_{-0.008}^{+0.009}$	resum	[85]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	22.0	$0.151{ }_{-0.013}^{0.015}$	$0.118{ }_{-0.008}^{+0.009}$	0.003	${ }_{-0.007}^{+0.009}$	resum	[85]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	35.0	$0.145_{-0.007}^{+0.012}$	$0.123{ }_{-0.006}^{+0.008}$	0.002	${ }_{-0.005}^{+0.008}$	resum	[85]
$\mathrm{e}^{+} \mathrm{e}^{-}\left[\sigma_{\text {had }}\right]$	42.4	0.144 ± 0.029	0.126 ± 0.022	0.022	0.002	NNLO	[86, 32]
$e^{+} e^{-}[\mathrm{jets} \& \mathrm{shps}]$	44.0	0.139 ± 0.0008	$0.123{ }_{-0.006}^{+0.028}$	0.003	${ }_{-0.005}^{+0.007}$	resum	[85]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	58.0	0.132 ± 0.008	0.123 ± 0.007	0.003	0.007	resum	[87]
$\mathrm{p} \overline{\mathrm{p}} \rightarrow \mathrm{b} \overline{\mathrm{b}} \mathrm{X}$	20.0	$0.145{ }_{-0.019}^{+0.018}$	0.113 ± 0.011	+0.0007	+0.008	NLO	[88]
$\mathrm{p} \overline{\mathrm{p}}, \mathrm{pp} \rightarrow \gamma \mathrm{X}$	24.3	$0.135{ }_{-0.008}^{+0.012}$	$0.110{ }_{-0.005}^{0.008}$	0.004	+0.007	NLO	[89]
$\sigma(\mathrm{p} \overline{\mathrm{p}} \rightarrow$ jets $)$	40-250		0.118 ± 0.012	(+	NLO	[90]
$e^{+} e^{-} \Gamma(\mathrm{Z} \rightarrow \mathrm{had})$	91.2	$0.1226_{-0.0038}^{+0.0058}$	$0.1226_{-0.0038}^{+0.0058}$	± 0.0038	${ }_{-0.0055}^{+0.0043}$	NNLO	[91]
$e^{+} e^{-} 4$-jet rate	91.2	0.1176 ± 0.0022	0.1176 ± 0.0022	0.0010	0.0020	NLO	[92]
$e^{+} e^{-}$[jets \& shps]	91.2	0.121 ± 0.006	0.121 ± 0.006	0.001	0.006	resum	[32]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	133	0.113 ± 0.008	0.120 ± 0.007	0.003	0.006	resum	[32]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	161	0.109 ± 0.007	0.118 ± 0.008	0.005	0.006	resum	[32]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	172	0.104 ± 0.007	0.114 ± 0.008	0.005	0.006	resum	[32]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	183	0.109 ± 0.005	0.121 ± 0.006	0.002	0.005	resum	[32]
$\mathbf{e}^{+} \mathbf{e}^{-}$[jets \& shps]	189	0.109 ± 0.004	0.121 ± 0.005	0.001	0.005	resum	[32]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	195	0.109 ± 0.005	0.122 ± 0.006	0.001	0.006	resum	[81]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	201	0.110 ± 0.005	0.124 ± 0.006	0.002	0.006	resum	[81]
$\mathrm{e}^{+} \mathrm{e}^{-}$[jets \& shps]	206	0.110 ± 0.005	0.124 ± 0.006	0.001	0.006	resum	[81]

Latest World Average

Thrust is a classic example of an "event-shape"

$$
T=\max _{\hat{t}} \frac{\sum_{i}\left|\hat{\mathbf{t}} \cdot \vec{p}_{i}\right|}{\sum_{i}\left|\vec{p}_{i}\right|} \quad \tau=1-T
$$

ALEPH, DELPHI, L3, OPAL, SLD

Almost all event shape fits cut on τ, eg. keep $\tau \in\{0.09,0.25\}$.

Complete result:

$$
\begin{array}{ccc}
\text { For } \tau>0 & \text { singular } & \text { non-singular } \\
\frac{1}{\sigma} \frac{d \sigma}{d \tau}= & \sum_{n, m} \alpha_{s}^{n} \frac{\ln ^{m} \tau}{\tau}+\sum_{n, m} \alpha_{s}^{n} \ln ^{m} \tau+\sum_{n, m} \alpha_{s}^{n} f_{m}(\tau) \\
& & +f\left(\tau, \Lambda_{\mathrm{QCD}} / Q\right)
\end{array} \begin{gathered}
\text { nonperturbative } \\
\text { power corrections }
\end{gathered}
$$

Factorization Theorem:

Hard Function Jet Function Soft Function

$+\left(\frac{d \sigma}{d \tau}\right)_{\text {nonsingular }}$
singular terms

Renormalization group evolution sums logs of τ
encodes dominant power corrections by a universal function
eg. $e^{+} e^{-} \rightarrow Z \rightarrow 2$ jets $+X_{\text {soft }}$

$$
m_{Z}^{2} \gg M_{\mathrm{jet}}^{2} \gg E_{\mathrm{soft}}^{2}
$$

$$
\mu_{Q} \simeq m_{Z}=91.2 \mathrm{GeV}
$$

$$
\mu_{J} \simeq M_{\mathrm{jet}} \simeq 20 \mathrm{GeV}
$$

$\mu_{S} \simeq E_{\text {soft }} \simeq 5 \mathrm{GeVor}$ smaller, down to Λ_{QCD}
$\mathrm{Q}^{2} \gg Q^{2} \tau \gg(Q \tau)^{2}$
hard jet soft

$$
\frac{d \sigma}{d \tau}=\sigma_{0} H(Q, \mu) Q \int d \ell J_{T}\left(Q^{2} \tau-Q \ell, \mu\right) S_{T}(\ell, \mu)
$$

Our Three Regions:

Recent Literature

i) $\mathcal{O}\left(\alpha_{s}^{3}\right)$ fixed order results (numerical)

Gehrmann, Gehrmann-De Ridder, Glover, Heinrich
S.Weinzierl
ii) summation of large logs to $\mathrm{N}^{3} \mathrm{LL}$ (analytic with Soft-Collinear EFT)

Becher and
Schwartz
iii) power corrections

Davison \& Webber; Lee \& Sterman;
Hoang \& I.S.; Ligeti, I.S., Tackmann.
iv) All together, a Global Thrust Fit for alphas

Abbate, Fickinger, Hoang, Mateu, I.S.

- $\mathcal{O}\left(\alpha_{s}^{3}\right)$ fixed order results
- Two-loop matrix elements

$$
|\mathcal{M}|_{\text {2-loop,3 partons }}^{2}
$$

- One-loop matrix elements $|\mathcal{M}|_{1 \text {-loop,4 }}^{2}$ partons

- Tree level matrix elements $|\mathcal{M}|_{\text {tree, } 5 \text { partons }}^{2}$

Infrared Poles cancel in the sum

Gehrmann, Gehrmann-De Ridder, Glover, Heinrich

convergence? μ dependence?

- summation oylarge logs to $\mathrm{N}^{3} \mathrm{LL}$ (analytic with SCET) Becher and

Catani et.al. LL, NLL,	Schwartz
NLL,	$N^{3} \mathrm{LL}$

$$
\ln \frac{d \sigma}{d y}=\left(\alpha_{s} \ln \right)^{k} \ln +\left(\alpha_{s} \ln \right)^{k}+\alpha_{s}\left(\alpha_{s} \ln \right)^{k}+\alpha_{s}^{2}\left(\alpha_{s} \ln \right)^{k}+\ldots
$$

		cusp	non-cusp	matching	alphas
standard	LL	1	-	tree	1
counting	NLL	2	1	tree	2
	NNLL	3	2	1	3
	$\mathrm{~N}^{3} \mathrm{LL}$	$4^{\text {pade }}$	3	2	4
primed	$\mathrm{LL}{ }^{\prime}$	1	-	tree	1
counting	NLL^{\prime}	2	1	1	2
	NNLL^{\prime}	3	2	2	3
	$\mathrm{~N}^{3} \mathrm{LL}^{\prime}$	$4^{\text {pade }}$	3	3	4

when fixed order results are important primed counting is better

- summation oylarge logs to $\mathrm{N}^{3} \mathrm{LL}$ (analytic with SCET) Becher and

Catani
et.al.
LL, NLL, NNLL, N³L

$$
\begin{gathered}
\ln \frac{d \sigma}{d y}=\left(\alpha_{s} \ln \right)^{k} \ln +\left(\alpha_{s} \ln \right)^{k}+\alpha_{s}\left(\alpha_{s} \ln \right)^{k}+\alpha_{s}^{2}\left(\alpha_{s} \ln \right)^{k}+\ldots \\
\mathrm{LL} \quad \mathrm{NLL} \quad \mathrm{NNLL} \quad \mathrm{~N}^{3} \mathrm{LL}
\end{gathered}
$$

better convergence nice μ dependence

- summation orlarge logs to $\mathrm{N}^{3} \mathrm{LL}$ (analytic with SCET) Becher and

Catani	Schwartz
LL, NLI	L,

$$
\begin{gathered}
\ln \frac{d \sigma}{d y}=\left(\alpha_{s} \ln \right)^{k} \ln +\left(\alpha_{s} \ln \right)^{k}+\alpha_{s}\left(\alpha_{s} \ln \right)^{k}+\alpha_{s}^{2}\left(\alpha_{s} \ln \right)^{k}+\ldots \\
\mathrm{LL} \quad \mathrm{NLL} \quad \mathrm{NNLL} \quad \mathrm{~N}^{3} \mathrm{LL}
\end{gathered}
$$

$$
\alpha_{s}\left(m_{Z}\right)=0.1172 \pm 0.0022
$$

error competitive with WA

- Nonperturbative corrections not included in central value
tuning of programs like Pythia does not properly separate nonpert. \& pert. corrections

Nonperturbative Corrections

Universal Soft Function

$$
\begin{gathered}
S_{\text {hemi }}\left(\ell^{+}, \ell^{-}, \mu\right)=\frac{1}{N_{c}} \sum_{X_{s}} \delta\left(\ell^{+}-k_{s}^{+a}\right) \delta\left(\ell^{-}-k_{s}^{-b}\right)\langle 0| \underbrace{\bar{Y}_{\bar{n}} Y_{n}(0)\left|X_{s}\right\rangle\left\langle X_{s}\right| \underbrace{Y_{n}^{\dagger}} \bar{Y}_{\bar{n}}^{\dagger}}_{\text {soft Wilson lines }}(0)|0\rangle \\
S_{T}(\tau) \text { is symmetric projection }
\end{gathered}
$$

OPE:

$$
\begin{array}{rlrl}
S_{T}(\tau) & =S_{\mathrm{pert}}(\tau)-S_{\mathrm{pert}}^{\prime}(\tau) \frac{2 \Omega_{1}}{Q}+\ldots & \text { Lee \& Sterman } \\
& =S_{\mathrm{pert}}\left(\tau-2 \Omega_{1} / Q\right)+\ldots & \text { shifts distributions } & \\
\text { Dokshitzer } \\
\text { to the right } & \text { \& Webber; }
\end{array}
$$

Nonperturbative Corrections

$$
\begin{gathered}
S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right)=\frac{1}{N_{c}} \sum_{X_{s}} \delta\left(\ell^{+}-k_{s}^{+a}\right) \delta\left(\ell^{-}-k_{s}^{-b}\right)\langle 0| \underbrace{\bar{Y}_{\bar{n}} Y_{n}(0)}_{\text {soft Wilson lines }}\left|X_{s}\right\rangle\left\langle X_{s}\right| \underbrace{\bar{Y}_{\bar{n}}^{\dagger}}_{Y_{n}^{\dagger}}(0)|0\rangle \\
S_{T}(\tau) \text { is symmetric projection }
\end{gathered}
$$

Universal Soft Function

Perturbative \& Nonperturbative parts:
$S(\ell, \mu)=\int d \ell^{\prime} \underbrace{S_{\mathrm{part}}\left(\ell-\ell^{\prime}\right.}, \mu) F(\underbrace{\left.\ell^{\prime}\right)}$
Ligeti, I.S., Tackmann

In general, Pert. and Nonpert. parts are hard to separate (renormalons).

Use renormalon free scheme for parameters in F , such as Ω_{1}

Thrust Data Sets

Experiment: Values of Q :
ALEPH $\{91.2,133.0,161.0,172.0,183.0,189.0,200.0,206.0\}$
DELPHI
$\{45.0,66.0,76.0,89.5,91.2,93.0,133.0,161.0,172.0,183.0$, 189.0, 192.0, 196.0, 200.0, 202.0, 205.0, 207.0\}

OPAL $\{91.0,133.0,177.0,197.0\}$
$\{41.4,55.3,65.4,75.7,82.3,85.1,91.2,130.1,136.1$, $161.3,172.3,182.8,188.6,194.4,200.0,206.2\}$
SLD \{91.2\}

TASSO
JADE $\{35.0,44.0\}$
AMY
\{55.2\}

At each Q there is a distribution in \mathcal{T}
Lots of Data: 807 bins

Ingredients for Global Analysis

- SCET Factorization Theorems, Sum Large Logs: $\sum_{k}\left(\alpha_{s} \ln ^{2}\right)^{k}$ LL, NLL, NNLL, $\mathrm{N}^{3} \mathrm{LL}$ and/or L^{\prime}, NLL^{\prime}, $\mathrm{NNLL}^{\prime}, \mathrm{N}^{3} \mathrm{LL}^{\prime}$
- Power Corrections: $\frac{\Lambda_{\mathrm{QCD}}}{\mu_{S}}, \frac{\Lambda_{\mathrm{QCD}}}{\mu_{J}}, \frac{\Lambda_{\mathrm{QCD}}}{\mu_{h}}, \frac{\mu_{S}}{\mu_{J}}$
- Multiple Regions: need smooth
transitions
i) peak: $\quad \mu_{h} \gg \mu_{J} \gg \mu_{S} \sim \Lambda_{\mathrm{QCD}}$
ii) tail: $\quad \mu_{h} \gg \mu_{J} \gg \mu_{S} \gg \Lambda_{\mathrm{QCD}}$
iii) $\underset{(\text { malti jet })}{\text { far tail: }} \quad \mu_{h} \sim \mu_{J} \sim \mu_{S} \gg \Lambda_{\mathrm{QCD}}$ (multi jet)
- Renormalon Subtractions (Mass, Gap), R-RGE
- Complete Basis for modeling Hadronic functions
- Final State QED radiation, with resummation of Sudakov
- Rigorous treatment of b-quark mass effects (factorization)

Tail Predictions with Scan over Theory Uncertainties

NLL^{\prime}

Tail Predictions with Scan over Theory Uncertainties

NLL' NNLL

$$
\frac{1}{\sigma} \tau \frac{d \sigma}{d \tau}
$$

Tail Predictions with Scan over Theory Uncertainties

NLL' NNLL NNLL'

$\frac{1}{\sigma} \tau \frac{d \sigma}{d \tau}$

Tail Predictions with Scan over Theory Uncertainties

NLL' NNLL NNLL' ${ }^{3}$ LL

$\frac{1}{\sigma} \tau \frac{d \sigma}{d \tau}$

Tail Predictions with Scan over Theory Uncertainties

NLL' NNLL NNLL' ${ }^{3} L L \quad N^{3} L L^{\prime}$

$\frac{1}{\sigma} \tau \frac{d \sigma}{d \tau}$

Include F \& renormalon subtractions from gap

What Parameters to fit?

Sample Fit results:

A Tail Fit

For τ in the tail region ($Q=91, \tau \in[0.09,0.33]$, etc.) we can safely do a two parameter fit

$\mathrm{d} \sigma / \mathrm{dt}$, Dashed=N3LL, Solid=N3LL', same fit coeffs.

Fit Uncertainties:

Statistical Error + Systematic Error
 + Hadronization ($2 \Omega_{1}$)

Error Ellipse from Fit

Theory Uncertainties

We do a flat scan over unknown theory parameters, fitting each time and take the range of central values mu dependence: $\quad \mu_{0} \quad n_{1} \quad \tau_{2} \quad \epsilon_{J} \quad r_{h}=\mu_{h} / Q \quad n_{s}$ 2, 3 loop uncertainties: $\quad \begin{array}{llllllll}s_{1} & \epsilon_{2} & \epsilon_{3} & \Gamma_{3}^{\text {cusp }} & H_{3} & J_{3} & S_{3}\end{array}$
theory MC statistics

Tail Fit Result

$$
\begin{aligned}
& \text { we use LEP working } \\
& \text { group's corr. model } \\
& \text { for syst.errors: } \\
& \begin{array}{r}
\begin{array}{r}
\frac{\chi^{2}}{d o f}
\end{array}=\frac{385.9}{433-2} \\
=0.895
\end{array}
\end{aligned}
$$

1.1
,in

$$
\alpha_{s}\left(m_{Z}\right)=0.1135 \pm 0.0008{ }_{-0.0013}^{+0.0007}
$$

hadronization + expt. error reduced by a factor of $2-3$

$$
\begin{array}{lc}
\alpha_{s}\left(m_{Z}\right)=0.1172 \pm 0.0010(\text { stat }) \pm 0.0008(\text { sys }) \pm 0.0012(\text { had }) \pm 0.0012(\text { pert }) & \text { Becher \& }
\end{array} \quad \text { Schwartz fit } \quad \text { resum }
$$

Global Thrust Analysis

$$
\begin{aligned}
\frac{\chi^{2}}{d o f} & =\frac{377.4}{433-2} \\
& =0.876
\end{aligned}
$$

(became a bit smaller)

Implications for ILC:

- Further improvements can be made by extending the fit to other event shapes without(!) requiring additional fit parameters.
- At the ILC we will have better statistical errors. And presumably improvements in the systematics. eg. Get full correlation matrix across bins which will lead to better control (perhaps less conservative). Also better data will pin down higher moments, Ω_{n}, of soft function, which in turn allows more data to be used (a feedback effect).
- Event shapes are complementary and competitive with other ILC methods, like the total Z-decay rate (at Giga-Z).

Together this will yield a systematic program to improve the determination of $\alpha_{s}\left(m_{Z}\right)$, at an ILC.

m_{t}

Motivation

- The top mass is a fundamental parameter of the Standard Model

$$
m_{t}=173.1 \pm 0.6_{\text {stat }} \pm 1.1_{\text {syst }} \mathrm{GeV}
$$ (a 0.8% error) (theory error? what mass is it?)

- Important for precision e.w. constraints

A 2 GeV shift in m_{t} changes the central values by 15%

- Top Yukawa coupling is large. Top parameters are important for analyzing many new physics models. (eg. Higgs masses in MSSM)
- Top is very unstable, it decays before it has a chance to hadronize. This provides an intrinsic smearing for jet observables.

Top provides playground for future analysis of new short lived strongly interacting particles.
$\Gamma_{t}=1.4 \mathrm{GeV}$
from $\quad t \rightarrow b W$

Threshold Scan
$e^{+} e^{-} \rightarrow t \bar{t}$

$$
\sqrt{s} \simeq 350 \mathrm{GeV}
$$

\triangleright count number of $t \bar{t}$ events
\triangleright color singlet state
\triangleright background is non-resonant
\triangleright physics well understood (renormalons, summations)

the classic ILC method

Precision Theory meets precision experiment:
 $\rightarrow \delta m_{t}^{\mathrm{exp}} \simeq 50 \mathrm{MeV}$
 $\rightarrow \delta m_{t}^{\mathrm{th}} \simeq 100 \mathrm{MeV}$
 ("peak" position)

Teubner,AH; Melnikov, Yelkovski;Yakovlev; Beneke,Signer,Smirnov; Sumino, Kiyo

- Measure a short-distance top-quark mass, like $m_{t}^{1 S}$ NOT the top pole mass.
- Have smearing by ISR and beamstrahlung, which must be controlled precisely

1S mass - RG-improved, with NNLL non-mixing terms

Threshold Theory Status

NRQCD with computable power and radiative corrections.

potential $\mathrm{V}(\mathrm{r})$: full NNLL

short-distance coefficints $C(\nu)$: almost NNLL
unstable

- complex matching conditions \& anomalous dimensions
tOP - effective Lagrangian non-hermitian
- total rates through the optical theorem
- phase space matching
compute electroweak effects compute non-resonant irreducible bkgnd

Beneke etal. 'o3, 'O4
Grzadkowski, Kuhn '87
Guth, Kuhn '92

Reisser, Hoang;' ${ }^{\prime}$ 5
Reisser, Hoang 'o6

NLL: Luke etal '99
NNLL(matching): Beneke etal; Czarnecki etal '99 NNLL(non-mixing) Hoang 'O3
NNLL (mixing) mostly known spin-dependent soft Penin etal. 'O4 usoft nf Stahlhofen, Hoang '05

Above Threshold $e^{+} e^{-} \rightarrow t \bar{t}$

- jet observable $\star \star$
- suitable top mass for jets \star

- initial state radiation
- final state radiation \star
- color reconnection
- sum large logs \star

$$
M_{t}^{\text {peak }}=m_{t}+(\text { nonperturbative effects })+(\text { perturbative effects })
$$

To simplify things we'll
$Q \gg m_{t} \gg \Gamma_{t}$ work far above threshold:
($\frac{m_{t}^{2}}{Q^{2}}$ dependence can be computed)

Hemisphere Invariant Masses
$M_{t}^{2}=\left(\sum_{i \in a} p_{i}^{\mu}\right)^{2}$
hemisphere-a

Peak region:

$$
\begin{aligned}
& s_{t} \equiv M_{t}^{2}-m^{2} \sim m \Gamma \ll m^{2} \\
& \hat{s}_{t} \equiv \frac{M_{t}^{2}-m^{2}}{m} \sim \Gamma \ll m
\end{aligned}
$$

Breit Wigner: $\quad \frac{m \Gamma}{s_{t}^{2}+(m \Gamma)^{2}}=\left(\frac{\Gamma}{m}\right) \frac{1}{\hat{s}_{t}^{2}+\Gamma^{2}}$

$$
\begin{aligned}
& M_{\bar{t}}^{2}=\left(\sum_{i \in b} p_{i}^{\mu}\right)^{2} \\
& \overline{\mathrm{n}} \text {-collinear } \\
& \begin{array}{c}
\text { thrust } \\
\text { axis }
\end{array}
\end{aligned}
$$

Disparate Scales \rightarrow Effective Field Theory

Factorization
 Theorem:

$$
\begin{aligned}
\left(\frac{d^{2} \sigma}{d M_{t}^{2} d M_{t}^{2}}\right)_{\mathrm{hemi}}= & \sigma_{0} H_{Q}\left(Q, \mu_{m}\right) H_{m}\left(m, \frac{Q}{m}, \mu_{m}, \mu\right) \quad \text { Answer } \\
& \times \int_{-\infty}^{\infty} d \ell^{+} d \ell^{-} B_{+}\left(\hat{s}_{t}-\frac{Q \ell^{+}}{m}, \Gamma, \mu\right) B_{-}\left(\hat{s}_{\bar{t}}-\frac{Q \ell^{-}}{m}, \Gamma, \mu\right) S_{\text {hemi }}\left(\ell^{+}, \ell^{-}, \mu\right) .
\end{aligned}
$$

$$
+\mathcal{O}\left(\frac{m \alpha_{s}(m)}{Q}\right)+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}\right)+\mathcal{O}\left(\frac{\Gamma_{t}}{m}\right)+\mathcal{O}\left(\frac{s_{t}, s_{\bar{t}}}{m^{2}}\right)
$$

Valid to all orders in α_{s}

\& includes leading

 nonperturbative effectsFactorization Theorem:

Hard Production modes integrated - out

$$
\left(\frac{d^{2} \sigma}{d M_{t}^{2} d M_{\bar{t}}^{2}}\right)_{\mathrm{hemi}}=\sigma_{0} H_{Q}\left(Q, \mu_{m}\right) H_{m}\left(m, \frac{Q}{m}, \mu_{m}, \mu\right)
$$

"Hard" collinear gluons integrated out

Answer

$$
\times \int_{-\infty}^{\infty} d \ell^{+} d \ell^{-} B_{+}\left(\hat{s}_{t}-\frac{Q \ell^{+}}{m}, \Gamma, \mu\right) B_{-}\left(\hat{s}_{\bar{t}}-\frac{Q \ell^{-}}{m}, \Gamma, \mu\right) S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right) .
$$

A useful event shape for massive unstable particles

Jet Functions

Evolution and decay of top quark close to mass shell

Soft Function

Non-perturbative Cross talk

Implications

$$
\left(\frac{d^{2} \sigma}{d M_{t}^{2} d M_{t}^{2}}\right)_{\text {hemi }}=\sigma_{0} H_{Q}\left(Q, \mu_{m}\right) H_{m}\left(m, \frac{Q}{m}, \mu_{m}, \mu\right)
$$

Answer

$$
\times \int_{-\infty}^{\infty} d \ell^{+} d \ell^{-} B_{+}\left(\hat{s}_{t}-\frac{Q \ell^{+}}{m}, \Gamma, \mu\right) B_{-}\left(\hat{s}_{\bar{t}}-\frac{Q \ell^{-}}{m}, \Gamma, \mu\right) S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right) .
$$

will be known even better with ILC

Short Distance Mass Scheme for Jets

- top $\overline{\mathrm{MS}}$ mass?
- pole mass?
- $1 S$ mass?
- top jet mass

Can not be treated consistently with Breit-Wigner for decay products

Breit-Wigner is fine, but has renormalon problem (instability)

Also couples scales in an ugly fashion.

Breit-Wigner is fine \& no renormalon
Good!

$$
m^{\text {pole }}-m_{t}^{\text {jet }} \sim \alpha_{s} \Gamma
$$

Use heavy quark jet function B to define the series

Jet Function Results up to NNLL:
(3 curves vary μ_{Γ})

NLL Cross-Section Results

soft non-perturbative radiation shifts the peak $\sim 2 \mathrm{GeV}$, and broadens the distribution

Symmetric mass projection:

soft non-perturbative radiation shifts the peak, and broadens the distribution

Top mass measurement above threshold at the ILC:
Two options:
I) use the parameter Ω_{1} extracted from massless jet data, as advocated above
II) make measurements at multiple Q's and extrapolate linearly

While it will be hard to compete with the threshold scan, the above threshold setup is systematically improvable. It will provide a consistency check, and allows measurement at any

$$
Q \simeq 0.5-1.0 \mathrm{TeV}
$$

With additional hard work (eg. m_{t}^{2} / Q^{2} corrections, ...) we may get to a $100-500 \mathrm{MeV}$ precision above threshold, by the ILC startup.

> Non-perturbative shifts will also be present for measurements of other unstable colored particles, particularly at edges of phase space.

Summary \& Outlook

$\alpha_{s}\left(m_{Z}\right)$

- The Soft-Collinear Effective Theory provides a powerful formalism for deriving factorization theorems and analyzing processes with Jets
- Important to properly account for nonperturbative effects
- Similar computations and fits can (and will) be carried out for other event shapes

The future for high precision determinations of α_{s} from event shapes at the ILC looks good!

- Threshold scan hard to beat for a precision top mass. Keeps improving.
- A systematically improvable method exists for measurements above threshold. Perturbative and nonperturbative effects are under control.

QCD factorization and resummation tools for the ILC

