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The ILC is being designed with precision measurements in mind. 

• Standard Model:  
Higgs mass & couplings,  
Precision electroweak, Weak boson couplings,          
Top Width,         ,  top couplings,

αs(Q)
mt . . .

• Beyond the SM: 
The most exciting precision measurements are of the mass and 
couplings of particles we have not yet seen.  In this regard the 
ILC is crucial to decipher the new physics we “plan” to 
observed at the LHC.

Rather I will focus in detail on two:  

αs(Q) mtand from             Colliderse+e−

This talk is not a review of all possible precision measurements.
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αs(Q) mtand from            colliderse+e−

•

Using:

Discuss recent theoretical advances in QCD that have an
   impact on precision physics at the ILC:
i) fixed order computations, 
ii) resummation, 
iii) improved theoretical framework for computations 
   *Factorization & Soft-Collinear Effective Theory ( SCET)

• e+e− → jets , event shape measurements of αs(mZ)

• e+e− → tt̄ at threshold Q ! 2mt

• e+e− → tt̄ above threshold Q > 2mt

Measure
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αs(Q)
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αs(mZ)

Motivation

•
• enters the analysis of all collider data (LHC, ILC, ... )

It also plays a role in searches for new physics
B→ Xsγindirectly in precision electroweak analyses,                  

directly through the unification of couplings:24
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Figure 12: Zoom of the region, where the gauge couplings unify in the MSSM. For the plots different αs(MZ) and
sin2 θW are used. In the left column we use αs(MZ) from σ0

had, the middle one the world average and in the right
one from Rl. In the first row we use sin2 θW from Ab

FB, in the middle one the world average and in the lowest one
from Al. In these fits the mSUGRA parameters m0 = 350 GeV, m1/2 = 500 GeV and tanβ = 50 are used.

14

mSUGRA (from Boer & Sander ‘03)

, etc.

COUPLINGS OF GAUGE BOSONS
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FIGURE 3.6. The evolution of αs with 1/ lnQ from various measurements; the data points are from
present ones and the stars denote simulated ILC measurements for

√
s = 91, 500 and 800 GeV.

lution of αs and allows a substantially improved extrapolation to the GUT scale. This is
exemplified in Fig. 3.7 where the evolution of the three gauge couplings is displayed. The
measurements at GigaZ will support unification at a scale MU " 2 × 1016 GeV, with a pre-
cision at the percent level. However, the couplings are not expected to meet exactly because
of the high threshold effects at the scale MU . The quantitative evaluation of the discrepancy
will provide important constraints on the particle content at the GUT scale.
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FIGURE 3.7. Extrapolations of the gauge couplings as measured at ILC to the unification scale [134].

Many other aspects of QCD can be addressed at the ILC. In particular, the γγ and eγ
options offer a broad new area of QCD studies in two-photon interactions at high energy and
luminosity. Examples are (see also chapter 4 for QCD studies in the process e+e− → tt̄) [7]
the total cross section, the photon structure function and the annihilation of virtual photons
as a test of BFKL dynamics.

II-48 ILC-Reference Design Report

Allanach et.al. ‘04
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Event Shapes are a classic method for determining αs(mZ)

LEP 2 jet event OPAL 3 jet event SLD 3 jet event

Three jet events are 
proportional to       ,  αs

good sensitivity
g

q

q̄e+

e−
γ, Z

qµ

Q2 = q2
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LEP era 
Results

e+e−

event shapes

Table 1: World summary of measurements of αs (status of April 2006): DIS = deep inelastic scattering;
GLS-SR = Gross-Llewellyn-Smith sum rule; Bj-SR = Bjorken sum rule; (N)NLO = (next-to-)next-to-
leading order perturbation theory; LGT = lattice gauge theory; resum. = resummed NLO. New or
updated entries since the review of 2004 [69] are underlined.

Q ∆αs(MZ0)

Process [GeV] αs(Q) αs(MZ0) exp. theor. Theory refs.

DIS [pol. SF] 0.7 - 8 0.113 + 0.010
− 0.008 ±0.004 +0.009

−0.006 NLO [76]
DIS [Bj-SR] 1.58 0.375 + 0.062

− 0.081 0.121 + 0.005
− 0.009 – – NNLO [77]

DIS [GLS-SR] 1.73 0.280 + 0.070
− 0.068 0.112 + 0.009

− 0.012
+0.008
−0.010 0.005 NNLO [78]

τ -decays 1.78 0.345 ± 0.010 0.1215 ± 0.0012 0.0004 0.0011 NNLO [70]

DIS [ν; xF3] 2.8 - 11 0.119 + 0.007
− 0.006 0.005 +0.005

−0.003 NNLO [79]
DIS [e/µ; F2] 2 - 15 0.1166 ± 0.0022 0.0009 0.0020 NNLO [80, 81]
DIS [e-p → jets] 6 - 100 0.1186 ± 0.0051 0.0011 0.0050 NLO [67]

Υ decays 4.75 0.217 ± 0.021 0.118 ± 0.006 – – NNLO [82]
QQ states 7.5 0.1886 ± 0.0032 0.1170 ± 0.0012 0.0000 0.0012 LGT [73]

e+e− [Fγ
2 ] 1.4 - 28 0.1198 + 0.0044

− 0.0054 0.0028 + 0.0034
− 0.0046 NLO [83]

e+e− [σhad] 10.52 0.20 ± 0.06 0.130 + 0.021
− 0.029

+ 0.021
− 0.029 0.002 NNLO [84]

e+e− [jets & shps] 14.0 0.170 + 0.021
− 0.017 0.120 + 0.010

− 0.008 0.002 +0.009
−0.008 resum [85]

e+e− [jets & shps] 22.0 0.151 + 0.015
− 0.013 0.118 + 0.009

− 0.008 0.003 +0.009
−0.007 resum [85]

e+e− [jets & shps] 35.0 0.145 + 0.012
− 0.007 0.123 + 0.008

− 0.006 0.002 +0.008
−0.005 resum [85]

e+e− [σhad] 42.4 0.144 ± 0.029 0.126 ± 0.022 0.022 0.002 NNLO [86, 32]
e+e− [jets & shps] 44.0 0.139 + 0.011

− 0.008 0.123 + 0.008
− 0.006 0.003 +0.007

−0.005 resum [85]
e+e− [jets & shps] 58.0 0.132 ± 0.008 0.123 ± 0.007 0.003 0.007 resum [87]

pp̄ → bb̄X 20.0 0.145 + 0.018
− 0.019 0.113 ± 0.011 + 0.007

− 0.006
+ 0.008
− 0.009 NLO [88]

pp̄, pp → γX 24.3 0.135 + 0.012
− 0.008 0.110 + 0.008

− 0.005 0.004 + 0.007
− 0.003 NLO [89]

σ(pp̄ → jets) 40 - 250 0.118 ± 0.012 + 0.008
− 0.010

+ 0.009
− 0.008 NLO [90]

e+e− Γ(Z → had) 91.2 0.1226+ 0.0058
− 0.0038 0.1226+ 0.0058

− 0.0038 ±0.0038 +0.0043
−0.0005 NNLO [91]

e+e− 4-jet rate 91.2 0.1176 ± 0.0022 0.1176 ± 0.0022 0.0010 0.0020 NLO [92]
e+e− [jets & shps] 91.2 0.121 ± 0.006 0.121 ± 0.006 0.001 0.006 resum [32]
e+e− [jets & shps] 133 0.113 ± 0.008 0.120 ± 0.007 0.003 0.006 resum [32]

e+e− [jets & shps] 161 0.109 ± 0.007 0.118 ± 0.008 0.005 0.006 resum [32]
e+e− [jets & shps] 172 0.104 ± 0.007 0.114 ± 0.008 0.005 0.006 resum [32]

e+e− [jets & shps] 183 0.109 ± 0.005 0.121 ± 0.006 0.002 0.005 resum [32]
e+e− [jets & shps] 189 0.109 ± 0.004 0.121 ± 0.005 0.001 0.005 resum [32]

e+e− [jets & shps] 195 0.109 ± 0.005 0.122 ± 0.006 0.001 0.006 resum [81]
e+e− [jets & shps] 201 0.110 ± 0.005 0.124 ± 0.006 0.002 0.006 resum [81]
e+e− [jets & shps] 206 0.110 ± 0.005 0.124 ± 0.006 0.001 0.006 resum [81]

37

theory errors 
dominate

S. Bethke’s  Review 2006

•

no longer true!

fit for each Q•
theoretical 
advances make
a rigorous 
GLOBAL FIT
possible
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Siegfried Bethke: The 2009 World Average of αs 11

The presence of correlated errors, if using the equations
given above, is usually signalled by χ2 < ndf . Values of
χ2 > ndf , in most practical cases, are a sign of possibly
underestimated errors. In this review, both these cases are
pragmatically handled in the following way:

In the presence of correlated errors, described by a
covariance matrix C, the optimal procedure to determine
the average x is to minimise the χ2 function

χ2 =
n

∑

i,j=1

(xi − x)(C−1)ij(xj − x) ,

which leads to

x =





∑

ij

(C−1)ijxj









∑

ij

(C−1)ij





−1

and

∆x2 =





∑

ij

(C−1)ij





−1

.

The choice of Cii = ∆x2
i and Cij = 0 for i "= j re-

tains the uncorrelated case given above. In the presence
of correlations, however, the resulting χ2 will be less than
ndf = n − 1. In order to allow for an unknown common
degree of a correlation f , the method proposed in [61] will
be applied by choosing Cij = f×∆xi×∆xj and adjusting
f such that χ2 = n − 1.

For cases where the uncorrelated error determimation
results in χ2 > ndf , and in the absence of knowledge which
of the errors ∆xi are possibly underestimated, all individ-
ual errors are scaled up by a common factor g such that
the resulting value of χ2/ndf , using the definition for un-
correlated errors, will equal unity.

Note that both for values of f > 0 or g > 1, ∆x
increases, compared to the uncorrelated (f = 0 and g = 1)
case.

4.2 Determination of the world average

The eight different determinations of αs(MZ0) summarised
and discussed in the previous section are listed in ta-
ble 1 and are graphically displayed in figure 5. Apply-
ing equations 14, 15 and 16 to this set of measurements,
assuming that the errors are not correlated, results in
an average value of αs(MZ0) = 0.11842 ± 0.00063 with
χ2/ndf = 5.4/7.

The fact that χ2 < ndf signals a possible correlation
between all or subsets of the eight input results. Assuming
an overall correletion factor f and demanding that χ2 =
ndf = 7 requires f = 0.23, inflating the overall error from
0.00063 to 0.00089.

In fact, there are two pairs of results which are known
to be largely correlated:

– the two results from e+e− event shapes based on the
data from JADE and from ALEPH use the same theo-
retical predictions and similar hadronisation models to

0.11 0.12 0.13

!!    ((""    ))s Z

Quarkonia (lattice)

DIS  F2 (N3LO) 

#-decays (N3LO)

DIS  jets (NLO)

e+e– jets & shps (NNLO) 

electroweak fits (N3LO) 

e+e– jets & shapes (NNLO) 

$ decays (NLO)

Fig. 5. Summary of measurements of αs(MZ0). The vertical
line and shaded band mark the final world average value of
αs(MZ0) = 0.1184 ± 0.0007 determined from these measure-
ments.

correct these predictions for the transitions of quarks
and gluons to hadrons. While the experimental errors
are uncorrelated, the theoretical uncertainties may be
assumed to be correlated to 100%. The latter accounts
for about 2/3 to 3/4 of the total errors. An appropriate
choice of correlation factor between the two may then
be f = 0.67.

– the QCD predictions for the hadronic widths of the
τ -lepton and the Z0 boson are essentially identical, so
the respective results on αs are correlated, too. The
values and total errors of αs(MZ0) from τ decays must
therefore be correlated to a large extend, too. In this
case, however, the error of one measurement is al-
most entirely determined by the experimental error
(Z0-decays), while the other, from τ -decays, is mostly
theoretical. A suitable choice of the correlation factor
between both these results may thus be f = 0.5.

Inserting these two pairs of correlations into the error
matrix C, the χ2/ndf of the averaging procedure results
in 6.8/7, and the overall error on the (unchanged) central
value of αs(MZ0) changes from 0.00063 to 0.00067. There-
fore the new world average value of αs(MZ0) is defined to
be

αs(MZ0) = 0.1184± 0.0007.

For seven out of the eight measurements of αs(MZ0),
the average value of 0.1184 is within one standard devi-
ation of their assigned errors. One of the measurements,
from structure functions [45], deviates from the mean value
by more than one standard deviation, see figure 5.

The mean value of αs(MZ0) is potentially dominated
by the αs result with the smallest overall assigned un-
certainty, which is the one based on lattice QCD [26]. In
order to verify this degree of dominance on the average
result and its error, and to test the compatibility of each

S. Bethke’s, arXiv:0908.1135

Latest World Average

αs(mZ) = 0.1183± 0.0008
HPQCD 0807.1687  

fit to     -splittings, Wilson loops       Υ

event shape results 
at fixed order

I will show that by 
i)  improving the theory and
ii) performing a global fit,
that LEP data already gives a 
precision comparable to the 
lattice result.

errors inflated to account for
variation in literature

With an ILC we can do even better.
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Thrust is a classic example of an “event-shape”

T = 1

2 jets

spherical 
event

t̂

peak

tail

τ = 1− T

τ = 1/2
T = 1/2

multijet

2 jets, soft radiation

2 jets, 3 jets
> 3 jets

Q = 91.2 GeV

ALEPH, DELPHI, L3, OPAL, SLD

τ = 0

d!
d"

1

!

20

15

10

5

0

0.0 0.1 0.2 0.3 0.4

"

T = max
t̂

∑
i |̂t · !pi|∑

i |!pi|

Almost all event shape fits cut on     ,  eg. keep                               .τ τ ∈ {0.09, 0.25}
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Complete result:

+
(dσ

dτ

)

nonsingular

Factorization Theorem:

Subleading SCET factorization 
theorems tells us 

how power corrections
enter here too

1
σ

dσ

dτ
=

∑

n,m

αn
s

lnm τ

τ
+

∑

n,m

αn
s lnm τ +

∑

n,m

αn
s fm(τ)

τ > 0 singular non-singular

+ f(τ,ΛQCD/Q) nonperturbative
power corrections

For

singular
terms

Jet Function Soft FunctionHard Function

dσ

dτ
= σ0H(Q,mZ , µ) Q

∫
d# JT

(
Q2τ −Q#, µ

)
ST (#, µ)

encodes dominant
power corrections

by a universal function

Renormalization group
evolution sums logs of  τ
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eg. e+e− → Z → 2 jets + Xsoft

µS ! Esoft ! 5 GeVor smaller,
down to ΛQCD

µJ !Mjet ! 20 GeV

µQ ! mZ = 91.2 GeV

m2
Z !M2

jet ! E2
soft

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

dσ

dτ
= σ0H(Q,µ) Q

∫
d# JT

(
Q2τ −Q#, µ

)
ST (#, µ)

Q2 ! Q2τ ! (Qτ)2
hard jet soft

•
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Our Three Regions:

peak

tail
multijet

d!
d"

1

!

20

15

10

5

0

0.0 0.1 0.2 0.3 0.4

"

Q2 ! Q2τ ! (Qτ)2 ∼ Λ2
QCD

Q2 ! Q2τ ! (Qτ)2 ! Λ2
QCD

Q2 ∼ Q2τ ∼ (Qτ)2 " Λ2
QCD

sum the logs

sum the logs
universal Ω1

Qτ power correction

nonperturbative ST

small power corrections
do not sum the logs(!)
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ii)

i)                fixed order results (numerical)

Recent Literature

O(α3
s)

summation of large logs to N3LL
(analytic with Soft-Collinear EFT)

iii) power corrections 

Gehrmann, Gehrmann-De Ridder, 
Glover, Heinrich

Becher and 
Schwartz

Davison & Webber;  Lee & Sterman;  
Hoang & I.S.;  Ligeti, I.S., Tackmann.  

S.Weinzierl

iv) All together, a Global Thrust Fit for alphas Abbate, Fickinger,
Hoang, Mateu, I.S.
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             fixed order results • O(α3
s)

Gehrmann, Gehrmann-De Ridder, 
Glover, Heinrich

Ingredients to NNLO e+e− → 3-jet

Two-loop matrix elements

|M|2
2-loop,3 partons

explicit infrared poles from loop integrals

L. Garland, N. Glover, A. Koukoutsakis, E. Remiddi, TG;

S. Moch, P. Uwer, S. Weinzierl

One-loop matrix elements

|M|2
1-loop,4 partons explicit infrared poles from loop integral and

implicit infrared poles due to single unresolved radiation

Z. Bern, L. Dixon, D. Kosower, S. Weinzierl;

J. Campbell, D.J. Miller, E.W.N. Glover

Tree level matrix elements

|M|2
tree,5 partons implicit infrared poles due to double unresolved radiation

K. Hagiwara, D. Zeppenfeld;

F.A. Berends, W.T. Giele, H. Kuijf;

N. Falck, D. Graudenz, G. Kramer

Infrared Poles cancel in the sum
NNLO corrections to jet rates and event shapes ine

+
e
−

annihilation – p.6

Event shapes at NNLO

NNLO thrust and heavy mass distributions

0
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1-T
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) 
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Q = M
Z
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 (M

Z
) = 0.1189

NNLO

NLO

LO

ALEPH data
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#
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h
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d
 d
!
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Q = M
Z

"
s
 (M

Z
) = 0.1189

NNLO

NLO

LO

ALEPH data

NNLO corrections sizeable, non uniform: 15-20% in T , 10% in ρ

theory uncertainty reduced by about 40 %

large 1 − T, ρ > 0.33: kinematically forbidden at LO

small 1 − T, ρ: two-jet region, need matching onto NLL resummation

G. Luisoni, H. Stenzel, TG

need to include hadronization corrections

NNLO corrections to jet rates and event shapes in e
+

e
−

annihilation – p.12

convergence? µ dependence?

Aleph data
NNLO
NLO
LO

Thrust

1−T

1
−
T
!

d
!

d
(1
−
T

)

0.40.350.30.250.20.150.10.050

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 1: The thrust distribution at LO, NLO and NNLO at
√

Q2 = mZ with "s(mZ) = 0.118.
The bands give the range for the theoretical prediction obtained from varying the renormalisation

scale from µ= mZ/2 to µ= 2mZ. In addition the experimental data points from the Aleph

experiment are shown.

17

S.Weinzierl
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summation of large logs to N3LL (analytic with SCET)• Becher and 
Schwartz

LL, NLL, NNLL, N3LL

Catani 
et.al.

ln dσ
dy = (αs ln)k ln+(αs ln)k + αs(αs ln)k + α2

s(αs ln)k + . . .

LL NLL NNLL N3LL

cusp non-cusp matching alphas
LL 1 – tree 1

NLL 2 1 tree 2
NNLL 3 2 1 3
N3LL 4pade 3 2 4
LL′ 1 – tree 1

NLL′ 2 1 1 2
NNLL′ 3 2 2 3
N3LL′ 4pade 3 3 4

standard
counting

primed
counting

when fixed order results are important primed counting is better

y = Fourier
transform of τ
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summation of large logs to N3LL (analytic with SCET)• Becher and 
Schwartz

LL, NLL, NNLL, N3LL

Catani 
et.al.

ln dσ
dy = (αs ln)k ln+(αs ln)k + αs(αs ln)k + α2

s(αs ln)k + . . .

LL NLL NNLL N3LL

1st order

2nd order

3rd order

4th order

matching scale variation
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Figure 8: Perturbative uncertainty at Q = 91.2 GeV. The first four panels show the variation
of the matching scale, the hard scale, the jet scale, and the soft scale. Each of the scales is
varied separately by a factor of two around the default value. The last two panels show the
effect of simultaneously varying the jet- and soft scales, see text. The lep 1 aleph data is
included for reference. All plots have αs(mZ) = 0.1168.

of τ and compare to the best fit result. We find that the extracted value is fairly insensitive to
the fit range. In fact, going from the standard range (solid line) to the larger region (dashed
lines) changes the best-fit value of αs(mZ) by less than 0.3%, from 0.1168 to 0.1171.

Next, we consider the perturbative theoretical uncertainty. In the effective field theory

16

better convergence
nice µ dependence
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summation of large logs to N3LL (analytic with SCET)• Becher and 
Schwartz

LL, NLL, NNLL, N3LL

Catani 
et.al.

ln dσ
dy = (αs ln)k ln+(αs ln)k + αs(αs ln)k + α2

s(αs ln)k + . . .

LL NLL NNLL N3LL

actual fit range

sample fit range

0.0 0.1 0.2 0.3 0.4

!0.2

!0.1

0.0

0.1

0.2

1!T

re
la
ti
v
e
u
n
ce
rt
ai
n
ty

total exp. uncertainty
data

stat. uncertainty
data

fit−data
data

Figure 7: Relative error for best fit to aleph data at 91.2 GeV. The inner green band includes
only statistical uncertainty, while the outer yellow band includes statistical, systematic and
hadronization uncertainties. The solid line is fit to 0.1 < 1−T < 0.24 giving αs(mZ) = 0.1168
while the dashed line is fit from 0.08 < 1 − T < 0.3 giving αs(mZ) = 0.1171. The smaller fit
range is used for the error analysis because it has been previously studied in [5].

αs value will not change much beyond first order. A fit to the NNLO fixed-order prediction
gives αs(mZ) = 0.1275.

The aleph and opal collaborations have published analyses of the lep 1 and higher
energy lep 2 thrust distributions. To fit αs we calculate the thrust distribution integrated
over each bin measured in the experiments. The resummed contribution in a given bin is
obtained as R2(τR) − R2(τL) using Eq. (26) for the bin with τL < τ < τR. For the matching
contribution, we integrate analytically the DA(τ), DB(τ) and DC(τ) functions and subtract
them from the analytic integral of A(τ) and the appropriately binned numerical distributions
B(τ) and C(τ).

A problem we encounter when trying to extract αs is that the experiments have published
statistical, systematic, and hadronization uncertainties for each bin, but have not made the
bin-by-bin correlations public. Without this information, we proceed with a conservative
approach to error estimates: to extract the default value of αs, we perform a χ2-fit to the
data including only statistical uncertainties. We then use the systematic and hadronization
errors on αs obtained in previous fits to aleph [5] and opal [43] data. In these papers fits
to αs were performed which included the correlation information. To be able to use their
values, we perform our fits using exactly the same fit ranges as used in these papers. This
is not entirely optimal, since the experimental systematic error will depend somewhat on the
theoretical model used in the fit. Our resummed calculation is valid in a wider range of τ than
the predictions used in [5, 43], so one could use data closer to the peak, where the statistics
are higher and resummation is more important. In a future analysis, the fit range could be
optimized to minimize the total error after folding in the proper correlations.

In Figure 7, we plot the relative statistical and total experimental uncertainty as a function

15

αs(mZ) = 0.1172± 0.0022

error competitive with WA

• Nonperturbative corrections
not included in central value

tuning of programs like Pythia does not 
properly separate nonpert. & pert. corrections
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ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞
d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%

+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.

31

soft Wilson lines

{ {

Universal Soft Function
Nonperturbative Corrections

OPE: Korchemsky, Sterman,
Lee & Sterman

Dokshitzer 
& Webber; 

= Spert(τ − 2Ω1/Q) + . . .
shifts distributions

to the right

ST (τ) is symmetric projection

Ω1 ∼ ΛQCD a universal parameter

ST (τ) = Spert(τ)− S′
pert(τ)

2Ω1

Q
+ . . .
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ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞
d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%

+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.

31

soft Wilson lines

{ {

Universal Soft Function
Nonperturbative Corrections

ST (τ) is symmetric projection

S(!, µ) =
∫

d!′ Spart(!− !′, µ) F (!′)}

partonic soft function at
fixed order

normalized model function, complete basis
 (must have exponential fall off !)

}

Perturbative & Nonperturbative parts:
Ligeti, I.S., Tackmann

Hoang & I.S.; 

In general, Pert. and Nonpert. parts 
are hard to separate (renormalons).

FIG. 2: Soft function S(!+, !−µ) as a function of ! = !+ = !− with µ = 1GeV, at tree level (solid
black line), one-loop (dotted red line), one-loop with renormalon subtraction (light solid red line),
two-loop NLL (dot-dashed blue line), and two-loop NLL with renormalon subtraction (dashed

blue line). Results are shown for three models: (a, b) = (2.5,−0.8) (left panel), (3.0,−0.5) (middle
panel) and (3.5,−0.2) (right panel). All models have Λ = 0.55 GeV and a gap of ∆̄ = 100MeV.

functions have unphysical negative values for small !, we see that the renormalon-subtracted

curves are alway positive. This effect of the renormalon subtraction is very general, we have

checked that it is realized for any choice of model parameters, renormalization scale µ, and

scheme parameter L >∼ Λ. We illustrate this in Fig. 3 by showing soft functions S(!, !, µ) with

Λ = 0.55 GeV and (a, b) = (3,−0.5), for different choices of µ and L. For the upper (lower)

panels µ = 1.0 (1.3) GeV, and for the left, middle and right panels we have L/Λ = 0.5, 1.0

and 1.5. Note that the soft function has an anomalous dimension, see Eq. (15) and (14), so

its shape and normalization change when varying µ.

In Fig. 2 the subtracted curves also show a somewhat smaller correction to the ! value

where their maximum is located than the unsubtracted curves, but this effect is more depen-

dent on the choice of parameters, such as the L value, see Fig. 3. At O(αs) the perturbative

series for the peak position has not yet approached its asymptotic behavior, but we expect

the improvement in convergence for the peak position of the soft function to become more

pronounced when higher order perturbative results for the soft function are considered.

To test whether Spart suffers from large logs for particular values of µ, the O(α2
s) NLL

predictions for the soft function from Eq. (21) are shown as the blue dot-dashed and dashed

lines in Figs. 2 and 3. The dot-dashed curves do not have renormalon subtractions, and

again exhibit negative dips. The dashed curve use our renormalon free ∆̄, with subtractions

given by the terms in the last set of square brackets in Eq. (28) and δ1 and δ2 from Eq. (32).

We see that at this order the renormalon subtractions continue to eliminate the negative

dip at small ! values. The behavior of the peak location for the two-loop NLL result is in

general not dramatically improved, but this is simply because the O(α2
s) soft function given

in Eq. (21) is based on a logarithmic approximation in a region where the logs are not large,

and does not contain the large renormalon terms of the full two-loop soft function. Finally,

for the lower right panel of Fig. 3, we see an indication for an instability due to increasing

logarithmic terms for µ = 1.3 GeV and L/Λ = 1.5. For the model function of Eq. (22) such

13

S(!, µ) removing  
renormalon with 

renormalon

Use renormalon free scheme for 
parameters in F, such as Ω1
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At each Q there is a distribution in 

Experiment:
ALEPH
DELPHI
OPAL

L3
SLD

TASSO
JADE
AMY

{14.0, 22.0, 35.0, 44.0}

Values of Q :

{55.2}

{91.2}

{35.0, 44.0}

{91.0, 133.0, 177.0, 197.0}

{91.2, 133.0, 161.0, 172.0, 183.0, 189.0, 200.0, 206.0}

{45.0, 66.0, 76.0, 89.5, 91.2, 93.0, 133.0, 161.0, 172.0, 183.0, 
189.0, 192.0, 196.0, 200.0, 202.0, 205.0, 207.0}

{41.4, 55.3, 65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1, 
161.3, 172.3, 182.8, 188.6, 194.4, 200.0, 206.2}

Thrust Data Sets

τ

d!
d"

1

!

20

15

10

5

0

0.0 0.1 0.2 0.3 0.4

"

Lots of Data: 807  bins
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Ingredients for Global Analysis

• SCET Factorization Theorems,  Sum Large Logs:

• Power Corrections: ΛQCD

µS

, ΛQCD

µJ

ΛQCD

µh

, , µS

µJ

LL, NLL, NNLL, N3LL and/or LL′, NLL′, NNLL′, N3LL′

Multiple Regions:•

Renormalon Subtractions (Mass, Gap),  R-RGE

i) peak: µh ! µJ ! µS ∼ ΛQCD

ii) tail: µh ! µJ ! µS ! ΛQCD

iii) far tail: µh ∼ µJ ∼ µS ! ΛQCD

need smooth 
transitions

Complete Basis for modeling Hadronic functions

(multi jet)

•
•

∑
k(αs ln2)k

Final State QED radiation, with resummation of Sudakov•
Rigorous treatment of b-quark mass effects (factorization)•
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vary αs(mZ)
tail

peak
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0
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vary first moment

vary c[2], with
1st moment fixed

vary αs(mZ)
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What Parameters to fit?

2Ω1
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Sample Fit results:

0.34 0.36 0.38 0.40 0.42
0.00

0.02

0.04

0.06

0.08

0.10

multijet, Dashed!N3LL, Solid!N3LL', same fit coeffs.

0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tail Fit !0.15,0.33", plotted over tail
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0
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5

0.10 0.15 0.20 0.25 0.30
0.0

0.5
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Q = 207GeV

Q = 35GeV

Q = 91.2 GeVZ data
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2.5

Q=183GeV

τ

τ

τ

τ

τ

τ

1
σ

dσ

dτ

1
σ

dσ

dτ
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0

5
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3 parameters:
αs(mZ), Ω1, c2, [∆0]

Here
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{αs(mZ),Ω1}A Tail Fit

0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fit tail predict peak

0.34 0.36 0.38 0.40 0.42
0.00

0.02

0.04

0.06

0.08

0.10

dΣ!dt, Dashed"N3LL, Solid"N3LL', same fit coeffs.
predict multijet

For τ in the tail region (Q = 91, τ ∈ [0.09, 0.33], etc.)
we can safely do a two parameter fit

0.0 0.1 0.2 0.3 0.4
0

5

10

15

20

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44
0.00

0.05

0.10

0.15

0.20

0.25

compare this to
perturbation theory 

only:
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Fit Uncertainties:

Theory Uncertainties

Statistical Error + Systematic Error 
+ Hadronization (       )2Ω1

Error Ellipse from Fit

We do a flat scan over unknown theory parameters, 
fitting each time and take the range of central values

µ0 εJn1 τ2 rh = µh/Q nsmu dependence:

2, 3 loop uncertainties: ε2s1 ε3
theory MC statistics

H3 J3 S3Γcusp
3
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0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150
0.0

0.5

1.0

1.5

2.0

αs(mZ)

2Ω1

(GeV)
Perturbation Theory,

Sums Logs + add F

χ2/dof

2.108
1.561
1.570

1.228

without 2Ω1

χ2/dof ! 2
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0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135
0.0
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2.0

Include F & renormalon 
subtractions from gap

αs(mZ)

2Ω1

(GeV)
χ2/dof

0.895
0.892
0.888
1.294

0.10 0.15 0.20 0.25 0.30
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Tail Fit 
Result

αs(mZ)

2Ω1
(GeV)

αs(mZ) = 0.1172± 0.0010(stat)± 0.0008(sys)± 0.0012(had)± 0.0012(pert)

comparison to 

we use LEP working 
group’s corr. model 

for  syst.errors:

0.110 0.111 0.112 0.113 0.114 0.115 0.116 0.117
0.7

0.8

0.9

1.0

1.1

error ellipse
∆χ2/dof = 1

hadronization + expt. error reduced by a factor of 2-3 

pert.error
αs(mZ) = 0.1135± 0.0008 +0.0007

−0.0013

χ2

dof
=

385.9
433− 2

= 0.895

Becher & 
Schwartz fit 

αs(mZ) = 0.1224± 0.0009(stat)± 0.0009(sys)± 0.0012(had)± 0.0035(theo) Gehrmann, et al.

resum

fixed order
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Tail Fit 
with QED
& b-mass

0.116

pure QCD

QCD+mass

QCD+mass

   +QED

0.112

0.7

1.0

0.9

0.8

0.113 0.114 0.115

(AFHMS - Preliminary)

Global Thrust Analysis 

.1132 .0013

0.1160.112 0.113 0.114 0.115

Global Thrust Analysis

(AFHMS - Preliminary)

0.117 0.118 0.119 0.120

PDG avg ('05)

Bethke avg ('06)

Lattice (HPQCD'08) 

Tau decay fixed order ('08) 

contour improved

0.121

         Tau decay ('08-'09)
DIS ('07)

.1132 .0013

χ2

dof
=

377.4
433− 2

= 0.876

(became a bit smaller)

2
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Implications for ILC:

• Further improvements can be made by extending the fit to other
  event shapes without(!) requiring additional fit parameters.

• At the ILC we will have better statistical errors. And presumably 
improvements in the systematics. eg. Get full correlation matrix across 
bins which will lead to better control (perhaps less conservative). Also
better data will pin down higher moments,        , of soft function,  
which in turn allows more data to be used (a feedback effect).

Ωn

Together this will yield a systematic program to improve the 
determination of              ,  at an ILC.

• Event shapes are complementary and competitive with 
other ILC methods, like the total Z-decay rate (at Giga-Z). 

αs(mZ)
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37Wednesday, September 30, 2009



The top mass is a fundamental parameter of the Standard Model•

Γt = 1.4 GeV

Motivation

Important for precision e.w. constraints•

Top Yukawa coupling is large.  Top parameters are important for 
analyzing many new physics models. (eg. Higgs masses in MSSM)

•

Top is very unstable, it decays before it has a chance to hadronize.  
This provides an intrinsic smearing for jet observables.

•

(a 0.8% error)

t→ bWfrom

(theory error?  
      what mass is it?)

eg. mH = 76+33
−24 GeV

87

mH < 182 GeV (95% CL)

209
A 2 GeV shift in mt changes the central values by 15%

mt = 173.1± 0.6stat ± 1.1systGeV

Top provides playground for future analysis of
new short lived strongly interacting particles.
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the classic ILC methodThreshold ScanThreshold Measurements

Threshold Scan:
√

s " 350 GeV (Phase I)

! count number of tt̄ events

! color singlet state

! background is non-resonant

! physics well understood

(renormalons, summations)

→ δmexp
t " 50 MeV

→ δmth
t " 100 MeV

What mass?
√

srise ∼ 2mthr
t + pert.series

(short distance mass: 1S↔ MS)

Loopfest V, SLAC, June 19-22 2006 A. H. Hoang – p.3

√
s " 350 GeV

Threshold Measurements

Threshold Scan:
√

s " 350 GeV (Phase I)

! count number of tt̄ events

! color singlet state

! background is non-resonant

! physics well understood

(renormalons, summations)

→ δmexp
t " 50 MeV

→ δmth
t " 100 MeV

What mass?
√

srise ∼ 2mthr
t + pert.series

(short distance mass: 1S↔ MS)

Simulations L = 300 fb−1, 9 + 1 scan points Peralta, Martinez, Miquel

(δmt)stat ∼ 20 MeV

(δλt/λt)stat = 15 − 50%

(δαs(MZ))stat = 0.001

(δΓt)stat = 50 MeV

Loopfest V, SLAC, June 19-22 2006 A. H. Hoang – p.4

Precision Theory meets
precision experiment:

Have smearing by ISR 
and  beamstrahlung, which
must be controlled precisely

(“peak” position)

Cross Section at NNLL Order

1S mass - RG-improved, with NNLL non-mixing terms

346 347 348 349 350 351 352 353 354!"""
s #GeV$0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Q
t2
R
v

LL , NLL , NNLL

ν =
0.15
0.2
0.3

Manohar,Stewart,Teubner,AH

m1S
t = 175 GeV

• RGI expansion shows better convergence

• theory error: δσtt̄/σtt̄ ∼ ±6% goal: 3%

→ full NNLL (mixing) running of C(ν) required → Stahlhofen, AH (usoft w.i.p.)

Loopfest V, SLAC, June 19-22 2006 A. H. Hoang – p.8

Measure a short-distance 
top-quark mass, like 
NOT the top pole mass.

•

•

Cross Section at NNLL Order

1S mass - fixed order approach

346 347 348 349 350 351 352 353 354!"""
s #GeV$0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Q
t2
R
v

LO , NLO , NNLO

ν =
0.15
0.2
0.3

Teubner,AH; Melnikov, Yelkovski;Yakovlev;

Beneke,Signer,Smirnov; Sumino, Kiyo

m1S
t = 175 GeV

• peak position stable (threshold masses: 1S, PS, . . . )

• large sensitivity to factorization/renormalization scale setting

• NNNLO partial results: Penin etal. ’02 ’05, Beneke etal. ’05, Eiras etal. ’05

Loopfest V, SLAC, June 19-22 2006 A. H. Hoang – p.8

e+e− → tt̄

m1S
t
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Threshold Theory Status

V(r): full NNLL

NRQCD with computable power and radiative corrections.

potential

short-distance
coefficints C(ν) :

Manohar, IS, Hoang; ‘99-’03
Pineda, Soto ‘00-’01
Peter ’94, Schroeder ‘98

NLL:  Luke etal ’99
NNLL(matching):  Beneke etal; Czarnecki etal ’99
NNLL(non-mixing) Hoang ’03
NNLL (mixing)  mostly known
    spin-dependent soft   Penin etal. ’04
    usoft nf  Stahlhofen, Hoang ‘05

almost NNLL

goal is ∼ 3% for δσ/σ

unstable 
top

NRQCD (unstable quarks)

“inclusive treatment”

⇒ Optical Theory: effective complex indices of refraction for

absorptive processes

⇒ NRQCD: contributions from real Wb final states included in

EFT matching conditions to QCD+ew. theory (=SM)

• complex matching conditions & anomalous dimensions

• effective Lagrangian non-hermitian

• total rates through the optical theorem

• phase space matching

• power counting maintained

• expansion around mass-shell (Beneke etal. ’04)

→ automatic in NRQCD

Christoph Reisser, AH; Phys. Rev. D 71, 074022 (2005)

Christoph Reisser, AH; hep-ph/0604104

Loopfest V, SLAC, June 19-22 2006 A. H. Hoang – p.9

Reisser, Hoang;’05
Reisser, Hoang ‘06

compute electroweak effects
compute non-resonant irreducible bkgnd 

Finite Lifetime Effects

Currents:

Op =
[
CLL + CNLL + CNNLL + iCNNLL

abs · · ·
]
·
( )

+ · · ·
e
+

e
-

t

t!" #$
!

σtot ∝ Im
[
C(ν)2 G(0, 0,

√
s + iΓt)

]

!!

• accounts for irreducible

interference contributions:

resonant↔ non-resonant

W+W−bb̄ fi nal states

Loopfest V, SLAC, June 19-22 2006 A. H. Hoang – p.14

Total Cross Section

346 347 348 349 350 351 352 353 354!"""
s #GeV$0.0

0.2

0.4

0.6

0.8

1.0

1.2

Σ
to
t
Γ,
Z
#pb$

346 347 348 349 350 351 352 353 354!"""
s #GeV$0.0

0.2

0.4

0.6

0.8

1.0

1.2

Σ
to
t
Γ,
Z
#pb$ ∼ −10%

!
!!"

∼ −3%

#

∼ −2%
$$%

Reisser, AHH

• also included summation of phase space logs ∼ (αs ln v)n

• finite lifetime corrections comparable to NNLL QCD corrections

• shift in the peak position: 30 − 50 MeV (δmex
t ≈ 50 MeV)

Loopfest V, SLAC, June 19-22 2006 A. H. Hoang – p.15

Beneke etal. ’03, ’04
Grzadkowski, Kuhn ’87
Guth, Kuhn ‘92

30-50 MeV
peak shift
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Above Threshold 

!"#$%&''(%)*+,-.*/0%12345%0%6/+37%89:0%&''(64;+< =>%=*24?%%9 @

Basic Methods

ILCThreshold Scan

Invariant  Mass Reconstruction Tev +LHC + ILC

“threshold masses”

13ABC70%12+D34C5E

F**?C+D0%%G*B42+3-

H IC72D3*4J%AB2+,%K2--C-%%%%%%%%+C-*424LC%K2--%%%%%

H 12--9-L.CKC%;C/C4;C4LC

H I2;32D3MC L*++CLD3*4-

H "*4-3-DC4D%-C/2+2D3*4

H NK/*+D24D%27-*%O*+%$CM2D+*4 KC2-B+CKC4D-

H /C+DB+P2D3MC COOCLD-

H 4*49/C+DB+P2D3MC COOCLD-

Q! mt ! Γt
To simplify things we’ll 

work far above threshold:

e+e− → tt̄

•

• suitable top mass for jets

•

•
•

initial state radiation

final state radiation

jet observable 

color reconnection
• sum large logs

!

!

!!

!
!

Mpeak
t = mt + (nonperturbative effects) + (perturbative effects)

(m2
t

Q2 dependence can be computed)
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Hemisphere Invariant Masses

M2
t =

( ∑

i∈a

pµ
i

)2

M2
t̄ =

( ∑

i∈b

pµ
i

)2

d2σ

dM2
t dM2

t̄

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

st ≡M2
t −m2 ∼ mΓ$ m2

Peak region:

Breit Wigner: mΓ
s2

t + (mΓ)2
=

( Γ
m

) 1
ŝ2

t + Γ2

ŝt ≡
M2

t −m2

m
∼ Γ$ m
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Disparate Scales Effective Field Theory

Q! m! Γ ∼ ŝt,t̄

QCD

SCET

HQET
      Soft
Cross-Talk

top

Q

m t

!t

Integrate out 
Hard Modes

Factorize Jets, Integrate 
 out energetic collinear 
 gluons

Evolution and 
decay of top 
close to mass shell

t t

HQET
antitop

n n

QCD

SCET

HQET
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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Answer

Fleming, Hoang,
Mantry, I.S.Factorization 

Theorem:

the soft function that can be used for both regions, and carry out detailed calculations

of perturbative quantities in both factorization theorems. We verify that the matching

conditions which define the Wilson coefficients at the scales Q and m are infrared safe,

compute one-loop perturbative corrections to the matrix elements, and carry out the next-

to-leading-log renormalization group summation of large logs. For the peak region these are

logs between the scales Q, m, Γ, and ΛQCD, while away from the peak they are between Q2,

m2, and the variables M2
t − m2

t and M2
t̄ − m2

t described below.

As an observable sensitive to the top mass, we considered in Ref. [2] the double differential

invariant mass distribution in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ m Γ # m2 , (1)

where

M2
t =

( ∑

i∈Xt

pµ
i

)2
, M2

t̄ =
( ∑

i∈Xt̄

pµ
i

)2
. (2)

Here Xt and Xt̄ represent a prescription to associate final state four momenta to top and

antitop invariant masses respectively. For simplicity we call Xt,t̄ the top and antitop jets,

and Mt,t̄ the invariant mass of the top and antitop jets respectively. The distribution in

Eq. (1) has a width Γ ∼ Γt + QΛQCD/m which can be larger than the top quark width

Γt. The restriction M2
t,t̄ − m2 ∼ m Γ # m2 defines the peak region which is sensitive to

the top quark mass m. Here the dynamics are characterized by energy deposits contained

predominantly in two back-to-back regions of the detector with opening angles of order m/Q

associated with the energetic jets or leptons coming from the top and antitop decays, plus

collinear radiation. The region between the top decay jets is populated by soft particles,

whose momentum is assigned to one of M2
t or M2

t̄ . The tail region is defined by invariant

masses starting just past the peak where the cross-section begins to fall off rapidly, namely

where m2 $ M2
t,t̄ − m2 and M2

t,t̄ − m2 >∼ m Γ or M2
t,t̄ − m2 $ m Γ. For M2

t,t̄ − m2 ∼ m2

we have an ultra-tail region where the cross-section is very small. The observable in Eq. (1)

in the peak and tail regions is the main focus of our analysis. We also briefly consider the

cross-section in the ultra-tail region.

The result for the double differential cross-section in the peak region at all orders in αs

is given by [2]

dσ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(
mJ ,

Q

mJ
, µm, µ

)

×
∫

d#+d#−B+

(
ŝt −

Q#+

mJ
, Γt, µ

)
B−

(
ŝt̄ −

Q#−

mJ
, Γt, µ

)
S(#+, #−, µ)

+ O
(mαs(m)

Q

)
+ O

(m2

Q2

)
+ O

(Γt

m

)
+ O

(st, st̄

m2

)
, (3) {FactThm}

6

Valid to all orders in αs

&  includes leading
nonperturbative effects
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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Answer

Hard Production 
modes integrated 

out

“Hard” collinear
gluons integrated out

Evolution and decay of top 
quark close to mass shell

Non-perturbative Cross talk

SOFT

JET

SOFT

JET

Jet Functions Soft Function

Fleming, Hoang,
Mantry, I.S.Factorization 

Theorem:

A useful event shape 
for massive unstable
particles
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a) b)

FIG. 6: Tree level top-quark jet functions in a) SCET and b) bHQET.

where the convolution takes into account the fact that depending on the definition, the

observable ŝ could be sensitive to scales of O(m) and O(Γ). In this case, since ŝ′ does not

know about the scale m, it can not be identical to ŝ. The convolution with T±(ŝ, ŝ′, m, µ)

then compensates for this difference. In our case (and most reasonable cases) the definition

of the invariant mass is not sensitive to m, so we have T±(ŝ, ŝ′, m, µ) = δ(ŝ − ŝ′)T±(m, µ)

and the matching equations are simply

Jn(mŝ, Γ, µm) = T+(m, µm) B+(ŝ, Γ, µm) ,

Jn̄(mŝ, Γ, µm) = T−(m, µm) B−(ŝ, Γ, µm) . (87)

From this we define a hard-coefficient that contains the mass corrections

Hm

(
m, µm

)
= T+(m, µm)T−(m, µm) . (88)

By charge conjugation we know that the jet functions for the top and antitop have the

same functional form, and that T+ = T−. When we sum large logs into the coefficient Hm it

develops an additional dependence on Q/m through its anomalous dimension which depends

on v+ · n̄ = v− · n = Q/m.

Since the functions T± are independent of the top width Γ, we are free to set Γ = 0 (i.e. use

stable top quarks) for the matching calculations at any order in perturbation theory. At

tree level we need to compute the discontinuity of the graphs in Fig. 6 which have a trace

over spin and color indices. For Γ = 0 this gives

Btree
+ (ŝ, Γ = 0) =

−1

8πNcm
(−2Nc) Disc

( i

v+ · k + i0

)
=

1

4πm
Im

( −2

v+ · k + i0

)

=
1

m
δ(2v+ · k) =

1

m
δ(ŝ) = δ(s) , (89)

which is identical to the result for the corresponding SCET jet function, so at tree level

T+ = T− = 1.

Plugging Eq. (87) into Eq. (81), and incorporating renormalization group evolution, the

form for the differential cross section is
(

d2σ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µm)Hm

(
m,

Q

m
, µm, µ

)
(90)

×
∫ ∞

−∞
d$+d$− B+

(
ŝt −

Q$+

m
, Γ, µ

)
B−

(
ŝt̄ −

Q$−

m
, Γ, µ

)
Shemi($

+, $−, µ).
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Answer

172 174 176 178 180

0.002

0.004

0.006

0.008

0.010

0.012

dσ

dM

M

Mpeak = mt + Γt(αs + α2
s + . . .) +

QΛQCD

mt

mt Mpeak

measure
this

extract
this

Implications

QΛQCD
mt

is predominantly QΩ1
mt !

known to 10% from fit in part I

will be known even better with ILC

“peak region”

(δmt)Ω1 ! 200 MeV

soft radiation shifts the measured masscompute
this
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Short Distance Mass Scheme for Jets

mass?MStop Can not be treated consistently 
with Breit-Wigner for decay products

pole mass?•

•

Breit-Wigner is fine, but has
renormalon problem (instability)

top jet mass•

mpole −mjet
t ∼ αsΓ

Breit-Wigner is fine & no renormalon

Use heavy quark jet function B to define the series

 mass?• 1S Also couples scales in an ugly fashion.

Good!
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Jet Function Results up to NNLL: 19

Bm

M t (GeV)

171 172 173 174 175

0.10

0.20

0.25

0.15

0.05

0.00

pole-mass scheme

LL

tree

NLL
NNLL

jet-mass scheme

LL

tree

NLL
NNLL

Bm

M t (GeV)

171 172 173 174 175

0.10

0.20

0.25

0.15

0.05

0.00

FIG. 3: The jet function, mB(ŝ, δm, Γt, µ) versus Mt, where ŝ = (M2
t −m2)/m and Γt = 1.43 GeV. The left panel shows results

in the pole-mass scheme and the right panel shows results in the jet-mass scheme. The black dotted curve is the tree-level
Breit-Wigner, the green short-dashed curves are LL results, blue long-dashed curves are NLL, and the solid red curves are at
NNLL order. For each of the LL, NLL, and NNLL results we show three curves with µΓ = 3.3, 5.0, 7.5 GeV respectively. Other
parameters are discussed in the text.

M t  (GeV)
peak

172.0

171.8

172.2

172.4

µ!2 4 6 8 10

jet LL

jet NLL

jet NNLL

pole LL

pole NLL

pole NNLL

 (GeV)

FIG. 4: Peak position Mpeak
t of the jet function versus µΓ. Short-dashed results are at LL order, long-dashed are at NLL

order, and solid are at NNLL order. Results are labeled for the pole mass-scheme (blue) and jet mass-scheme (red).

residual µΓ dependence is smaller in the jet-scheme than in the pole-scheme. The numerical size of the residual µΓ

scale dependence varies region by region. In the pole-mass scheme the scale dependence in the slope before the peak
is ∼ 17% at NLL and ∼ 14% at NNLL, while the maximum variation near the peak is 23% at NLL and 17% at
NNLL, and then in the tail region well above the peak it is ∼ 19% at NLL and ∼ 13% at NNLL. Hence, in the pole
scheme including the NNLL results does not significantly decrease the µΓ dependence. In the jet-mass scheme the
scale dependence in the slope before the peak is ∼ 6% at NLL and ∼ 2% at NNLL, while the maximum variation
near the peak is 14% at NLL and 7% at NNLL, and then in the tail above the peak it is ∼ 12% at NLL and ∼ 5%
at NNLL. Thus, in the jet-mass scheme the µΓ dependence is reduced by a factor of two or more. The same level of
improvement is observed for different values of the scheme parameter R than the value used in our analysis.

In Fig. 4 we plot the peak position Mpeak
t of the jet function curves, versus µΓ. This figure displays the convergence

and µΓ dependence of the jet function peak position in more detail than Fig. 3. The stability of the jet function
peak has a direct influence on the peak of the cross-section, and both are very sensitive to the value of the short-
distance top-mass. Hence the peak-position is important to gauge the effect of perturbative corrections for the mass
measurement. We use a wider range for µΓ than that of the curves in Fig. 3, but note that results for µΓ ≤ 3 GeV
upset the hierarchy µΓ/µΛ # 5 and hence can be safely ignored. In the pole-mass scheme we observe that there is
limited sign of convergence for the peak position, although the shifts with µΓ = 5 GeV at each order are still relatively
small being # 230 MeV from LL to NLL order and # 120 MeV from NLL to NNLL order. The lack of convergence
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FIG. 3: The jet function, mB(ŝ, δm, Γt, µ) versus Mt, where ŝ = (M2
t −m2)/m and Γt = 1.43 GeV. The left panel shows results

in the pole-mass scheme and the right panel shows results in the jet-mass scheme. The black dotted curve is the tree-level
Breit-Wigner, the green short-dashed curves are LL results, blue long-dashed curves are NLL, and the solid red curves are at
NNLL order. For each of the LL, NLL, and NNLL results we show three curves with µΓ = 3.3, 5.0, 7.5 GeV respectively. Other
parameters are discussed in the text.
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FIG. 4: Peak position Mpeak
t of the jet function versus µΓ. Short-dashed results are at LL order, long-dashed are at NLL

order, and solid are at NNLL order. Results are labeled for the pole mass-scheme (blue) and jet mass-scheme (red).

residual µΓ dependence is smaller in the jet-scheme than in the pole-scheme. The numerical size of the residual µΓ

scale dependence varies region by region. In the pole-mass scheme the scale dependence in the slope before the peak
is ∼ 17% at NLL and ∼ 14% at NNLL, while the maximum variation near the peak is 23% at NLL and 17% at
NNLL, and then in the tail region well above the peak it is ∼ 19% at NLL and ∼ 13% at NNLL. Hence, in the pole
scheme including the NNLL results does not significantly decrease the µΓ dependence. In the jet-mass scheme the
scale dependence in the slope before the peak is ∼ 6% at NLL and ∼ 2% at NNLL, while the maximum variation
near the peak is 14% at NLL and 7% at NNLL, and then in the tail above the peak it is ∼ 12% at NLL and ∼ 5%
at NNLL. Thus, in the jet-mass scheme the µΓ dependence is reduced by a factor of two or more. The same level of
improvement is observed for different values of the scheme parameter R than the value used in our analysis.

In Fig. 4 we plot the peak position Mpeak
t of the jet function curves, versus µΓ. This figure displays the convergence

and µΓ dependence of the jet function peak position in more detail than Fig. 3. The stability of the jet function
peak has a direct influence on the peak of the cross-section, and both are very sensitive to the value of the short-
distance top-mass. Hence the peak-position is important to gauge the effect of perturbative corrections for the mass
measurement. We use a wider range for µΓ than that of the curves in Fig. 3, but note that results for µΓ ≤ 3 GeV
upset the hierarchy µΓ/µΛ # 5 and hence can be safely ignored. In the pole-mass scheme we observe that there is
limited sign of convergence for the peak position, although the shifts with µΓ = 5 GeV at each order are still relatively
small being # 230 MeV from LL to NLL order and # 120 MeV from NLL to NNLL order. The lack of convergence
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FIG. 15: F(Mt,Mt̄), the differential cross-section in units of σ0/Γ2
t , versus Mt and Mt̄. The result

is shown at NLL order.
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FIG. 16: Normalized peak cross-section, F(Mt,Mt) versus Mt. The dashed curves have µΓ = 5GeV,

and the solid curves have µΓ = 3.3, 7.5GeV. The left panel shows results at LL (lower purple
curves) and NLL (upper red curves) with the jet and ∆̄ schemes. The center panel shows results
in the jet-mass scheme (red) versus the pole-mass scheme (blue), where in both cases we use the

∆̄ scheme. The right panel shows results in the ∆̄(µ) scheme for the gap parameter (red) versus
the ∆ scheme (magenta), where in both cases we use the jet-mass scheme.

that the peak of the cross-section is very stable to the variation of µΓ, and changes very little

from LL to NLL order. As explained above, by far the dominant contribution of the shift of

the peak away from the input short-distance jet-mass is due to the underlying soft-function,

shown here by the difference between the dashed and solid lines. In the central panel we

show again the NLL order cross sections in the jet-mass and ∆̄-scheme (red curves) and

compare it to the NLL predictions in the pole-mass scheme for the same three µΓ values

(blue curves). The results show that in the pole-mass scheme there is more variation of the

peak position than in the jet-mass scheme. Finally in the right panel we show variations of

the cross-section in comparing the renormalon free ∆̄-scheme (red curves) and the gap with

a renormalon ambiguity in the ∆-scheme (magenta curves). This figure demonstrates that

the effect of the switching to a renormalon free gap-scheme is larger than the residual µΓ
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NLL Cross-Section
Results

∼ 2 GeVsoft non-perturbative radiation shifts the peak               ,
and broadens the distribution
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FIG. 9: Effect of a change in Q on the invariant mass distribution. Results on the left are generated
from d2σ/dMtdMt̄, a) shows the peak position versus Q/mJ , and b) gives the full width at half-
max versus Q/mJ . In c) we show dσ/dMt in units of 2σH

0 /Γ for different values of Q/mJ . The

curves use mJ = 172GeV, Γ = 1.4GeV, and the parameters in Eq. (119).

mass distribution dσ/dMt in Fig. 9c. In particular we plot

F1(Mt) =
2

Γ

∫ Mupper

Mlower

dMt̄ F (Mt, Mt̄), (120)

which gives dσ/dMt in units of 2σH
0 /Γ. In the numerical analysis we center the integration

interval [Mlower, Mupper] on Mpeak
t̄ with a size that is twice the measured peak width. Hence

the size of the interval depends on Q, but keeps the number of events collected at each Q

constant for the comparison. For different choices of Q we find that the peak position and

width of F1(Mt) behave in an identical manner to Figs. 9a,b, including having essentially

the same slopes. In order to keep the area under the curves constant the peak height drops

as Q is increased. Note that for values Q/mJ ! 8–10 the observed peak location may be as

much as 2.0–2.5 GeV above the value of the Lagrangian mass mJ one wants to measure. In

our analysis mJ is held fixed as shown by the dashed line in Fig. 9c.

To gain an analytic understanding of this linear behavior we consider the effect of Q on

the mean of the cross-section, which is a good approximation to the peak location. Taking

the first moment with respect to ŝt/2 = (Mt − mJ) over an interval of size 2L # QΛ and
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Symmetric mass projection:

soft non-perturbative radiation shifts the peak,
and broadens the distribution
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Top mass measurement above threshold at the ILC:

I)  use the parameter         extracted from massless jet data,  
      as advocated above 

Two options:
Ω1

II)  make measurements  at multiple Q’s and extrapolate linearly
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FIG. 17: a) Peak position of the single differential distribution dσ/dMtdMt̄(Mt,Mt) as a function

of µΓ. Red curves use the jet-mass and ∆̄ scheme and blue curves use the pole-mass and ∆
scheme. Dashed curves are LL order, and solid curves are NLL order. The bars to the left
show the size of the scale variation and left-to-right correspond to the curves from bottom-to-

top. b) The solid curves show the peak position versus Q/m for six different models, which from
top to bottom are (a, b) = (3.5,−0.8) (purple), (a, b) = (2.5,−0.8) (blue), (a, b) = (3.5,−0.4),

(magenta), (a, b) = (2.5,−0.4) (red), (a, b) = (3.5, 0.4) (yellow), (a, b) = (2.5, 0.4) (green). The
solid curves show a linear fit using the values at Q/m = 4 and 5. Extrapolated to Q/m = 0 any line
converges on the underlying short-distance mass, independent of the soft-radiation model, yielding

mt(µ = 5GeV) = 171.9 ± 0.1GeV.

In order to analyze the parameter dependence of the cross-section we will now consider

the diagonal F(Mt, Mt, mJ , Q/mJ), which we simply referred to as F(Mt, Mt) in the analysis

that follows. In Fig. 16, in the left panel, we show LL curves (bottom three lines) and NLL

curves (top three lines) using µΓ = 3.3, 5.0, 7.5 GeV in the jet-mass and ∆̄-scheme. We find

that the peak of the cross-section is very stable to the variation of µΓ, and changes very little

from LL to NLL order. As explained above, by far the dominant contribution of the shift of

the peak away from the input short-distance jet-mass is due to the underlying soft-function,

shown here by the difference between the dashed and solid lines. In the central panel we

show again the NLL order cross sections in the jet-mass and ∆̄-scheme (red curves) and

compare it to the NLL predictions in the pole-mass scheme for the same three µΓ values

(blue curves). The results show that in the pole-mass scheme there is more variation of the

peak position than in the jet-mass scheme. Finally in the right panel we show variations of

the cross-section in comparing the renormalon free ∆̄-scheme (red curves) and the gap with

a renormalon ambiguity in the ∆-scheme (magenta curves). This figure demonstrates that

the effect of the switching to a renormalon free gap-scheme is larger than the residual µΓ

dependence at NLL order.

The µΓ dependence of the peak position is shown more explicitly in the left panel of

Fig. 17. In the pole-scheme (blue curves) we see that there is very little change to the µΓ
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}
different Ω1s

Mpeak ! mt +
QΩ1
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While it will be hard to compete with the threshold scan, the 
 above threshold setup is systematically improvable.  It will provide
 a consistency check, and allows measurement at any 

Q ! 0.5− 1.0 TeV

Non-perturbative shifts will also be present for 
measurements of other unstable colored particles, 
particularly at edges of phase space.

With additional hard work                                              
we may get to a                                               above threshold, 
by the ILC startup.

100− 500 MeV precision
(eg. m2

t /Q2 corrections, . . .)
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• The Soft-Collinear Effective Theory provides a powerful formalism 
for deriving factorization theorems and analyzing processes with Jets

Summary & Outlook

• Similar computations and fits can (and will) be carried 
out for other event shapes

The future for high precision determinations of 
from event shapes at the ILC looks good!αs

αs(mZ)

• A systematically improvable method exists for measurements above
threshold.  Perturbative and nonperturbative effects are under control.

• Important to properly account for nonperturbative effects

mt

• Threshold scan hard to beat for a precision top mass.  Keeps improving.

QCD factorization and resummation tools for the ILC
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