Physics/Optimisation Planning

Mark Thomson University of Cambridge

This talk:

- Lol loose ends
- 2 New physics studies?
- **9** What next...

1 Lol → TDR

★ From birth of ILD to Lol took ~1.5 years

IDAG: "At the LOI stage the progress of the Collaboration in realizing their detector concept is impressive and the path is clear for ILD to make continued progress"

- **★** We have 2½ 3 years to produce the TDR
- ★ Need to start to define our path forward
- **★** From physics/optimisation perspective want to identify main tasks

In the next few slides, try to start this discussion...

2 Simulation

Guideline for the Plan of the detector groups

- 4. Develop a realistic simulation model of the baseline design, including faults and limitations
- **★** What does this mean for ILD?
 - Many sub-detectors already in pretty good shape

- Probably already sufficient level of detail. A few details...
 - non-uniformity across HCAL tiles ?
- Need to include dead cells (digitisation) ?

Simulation: areas needing work

★ Silicon tracking

- Current models are not as detailed as ECAL/HCAL/VTX
- Do we need to model strips?
- Need support structures
- **★ Forward region (LCAL, LHCAL, BCAL, Masks, Beampipe)**
 - work needed on detail design
 - support structures
 - LHCAL, LCAL, BCAL need more detail ("idealised")
 - Potentially important for background

★ TPC: not clear, depends on design of endplane

Simulation: areas needing work...

- **★** Services and cables
 - data out
 - power, (cooling?) in

- ★ Layout / material budget needs to be defined
 - This could start soon report/define baseline for Paris mtg.?
 - Don't want to simulate individual cables (makes little sense)
 - Could define cable volumes with estimated average density

Simulation: Strawman proposal

- ***** Aim to satisfy most of:
 - 4. Develop a realistic simulation model of the baseline design, including faults and limitations

in the next 6 months.

- Plausible timescale
- We are starting from a strong position
- But, requires real work focussed in a few key areas

3 Options

Guideline for the Plan of the detector groups

2. Define a feasible baseline design

(Options may also be considered. But one of them should be proven to be feasible.)

- **★** Need to be in position to evaluate options
 - Essential to include in Mokka as soon as possible
 - integration into reconstruction is non-trivial
 - Should have comparable level of detail to reference detectors
- **★** What?
 - Scintillator strip ECAL
 - Here the reconstruction is a significant task
 - MAPs ECAL
 - Again the reconstruction is a significant task
 - Semi-digital HCAL
 - Essential to implement in current HCAL geometry and in "Videau" layout [will help evaluate performance]

Guideline for the Plan of the detector groups

- Simulate and analyze some reactions at 1 TeV, including realistic higher energy backgrounds demonstrating the detector performance.
- **★** Heroic efforts for the Lol!
 - But incomplete...
 - Not fully integrated into a physics analysis

So what was done for Lol?

TPC Background

- **★** Large fraction of hits from low energy electrons/positrons from photon conversions
- **★** Form tight helices, "micro-curlers", along length of TPC
- ★ Background concentrated on relatively few TPC readout pads
- **★** Developed PatRec software to identify and remove "micro-curlers"

150 BXs of pair background

★ Effective removal of large fraction of background hits

	Top (p _T >1 GeV)	Background
Raw hits	~8,600	~265,000
After	~8,500	~3,000

★ By eye – clear that this should be no problem for PatRec

- *** Superimpose 150 BXs TPC background on** $e^+e^- \rightarrow t\bar{t} \rightarrow 6 \text{ jets}$
- **★ For 100 events, NO loss in track-finding efficiency observed**
- **★** Similar story for 3x nominal background
- * A clear demonstration of the robustness of TPC tracking

Background: VTX

- ★ Background in VTX detector complicated by assumptions for Si pixel integration time
- **★ IF one assumes single BX tagging capability then background is not an issue**
- ★ For ILD studies "conservatively" assumed 30 μs / 125 μs integration times for VTX layers (0,1) and (2,3,4,5) respectively
- **★** Therefore VTX integrates over 83/333 BXs
- **★** Superimpose on fully-hadronic top-pair events at 500 GeV
 - → 200,000 background hits per event!
- ★ Also consider finite cluster size of background hits (~10 pixels)
- ★ Significantly increases occupancy

layer	Occ.
0	3.3 %
1	1.9 %
2	0.4 %
3	0.3 %
4	0.08 %
5	0.06 %

Background: VTX - fake tracks

- ★ Combinatorics produce fake "ghost" tracks
- **★** In addition to some real electron/positron background tracks
- ★ Large combinatoric background challenges pattern recognition
- ★ Reconfigured current algorithm (not ideal)
- ***** From 83/333 BXs overlayed on $e^+e^- \rightarrow t\bar{t} \rightarrow 6 \text{ jets}$: reconstruct ~34 "ghost" tracks/event (~1/3 are genuine)
- ★ Rejected by requiring at least 1 SIT hit or >10 TPC associated hits

Left with ~0.5 GeV per event (mixture of real tracks/combinatorics)

Scorecard...

- **★** TPC studies look pretty solid
- **★** The VTX studies assumed integration times of 83/333 BXs (31/125 μs) what is really needed?
- **★** To get background level down to acceptable level assumed single BX-tagging capability in SIT and in TPC
- **★ No account for SIT strip structure/ghosts**
- **★ No background studies in FTD**
- ★ Occupancies in inner layers are high for nominal ILC background i.e. 2-3 %
- **★** With assumed integration times, safety factor not great, i.e. for 10 x current background probably lose inner layers

Issue of time-stamping in ILD needs more consideration

- **★** Potentially large impact on:
 - timing requirements for VTX and SIT
 - design of SIT
 - FTD; as currently designed may not cope with ILC background!

What needs to be done...

- ★ Ideally aim to incorporate background into analyses as the default
 - Beam background
 - Two-photon background
- **★** To do this requires:
 - New tracking code!
 - TPC patrec (old f77 code) needs replacing
 - SiliconTracking not optimised for background
 - Proper simulation/reconstruction of silicon strip detector
 - Need to account for stereo strip layers in SIT/FTD (currently, artificially combine into "point")
 - Reconstruction code for FTD combinatorics potentially large
 - New digitisation code?
 - Treatment (possibly parametric) of clusters in pixel detectors
 - Definition of two photon samples
 - More realistic treatment of BX tagging in reconstruction
 - Realistic plan how to implement into analyses (speed issues)

What needs to be done <u>now</u>

- **★** But, should not underestimate the amount of work!
 - This is a major under-taking
 - But it is potentially important
 - It will also take time, certainly >1 year...
- **★** Define a coherent plan of work
 - We did this at Tsukuba and it worked
 - Again this could be an aim for the Paris

6 Physics

Guideline for the Plan of the detector groups

Simulate and analyze benchmark reactions, which can be updated

Main issues to consider

- ★ Still loose ends to tie up (e.g. include new qqcc analysis in Lol)
 - **■** 30 % →15 % stat. error on BR(H→cc)
- **★ ZHH final state**
 - ILC Golden measurement Higgs trilinear coupling
 - Current studies suggest very little sensitivity!
 - Need to improve reconstruction of b-jet energy?
 - This a major analysis/reconstruction effort but IMPORTANT
 - Set up "task force" to consider possible improvements?
- ★ How to approach the "Peskin" physics questions
 - For 500 GeV physics could start now
 - For 1 TeV could generate "main SM backgrounds" with current detector model (e.g. 4f and 6f) + some signals
 - important to keep the physics analysis effort moving forward
 - can't leave this for 12-18 months...

New beam parameters

- ★ Need to make a preliminary assessment of impact of new beam parameters
- **★** Should aim to provide input early in 2010
- **★** Need to consider carefully what to study:
 - Higgs recoil mass at 250 GeV
 - Quantify loss going from 250 GeV to 500 GeV
 - ...

What needs to be done <u>now</u>

- **★** Define a coherent plan of work...
 - Aim for the Paris meeting
 - In meantime, start preparing for limited 1 TeV production (first need Whizard stdhep files...)

6 Summary

Main Priorities (i.e. all essential for TDR)

- Define more realistic Si-tracking in Mokka
- Cables/Services in Mokka
- Options in Mokka: Scint-ECAL, MAPs-ECAL, Semi-digi. HCAL
- Modify/develop reconstruction for options to evaluate performance
- New tracking code (TPC, SIT + VTX, FTD)
 - replace f77 TPC patrec
 - proper treatment of strip detectors
 - dedicated forward tracking code
- Develop plan for treatment of background
 - identification of tasks/names...
- ZHH!
- Develop a plan for continued physics analysis
 - I would favour limited 1 TeV production soon
 - Not too soon to start...
- ... (What have I missed)

Over to Frank...