Design Considerations for the ILC

Towards a new baseline for TDP2: an open discussion with the Detector & Physics Community

Nick Walker
for the Project Management
Overview

• History & Rationale

• Straw-man Baseline 2009 Working Assumptions

• Primary Focus & Issues

• Upgrades & Physics Scope Impact

• Process towards a new Baseline: Next Steps
History & Rational
The R&D Plan

- Stated TDP Goals:
 - Updated ILC design
 - Results of critical risk-mitigating R&D
 - Updated VALUE estimate and schedule
 - Project Implementation Plan
TDP R&D Plan

<table>
<thead>
<tr>
<th>Activity</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech. Design Phase I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tech. Design Phase II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shallow site option impact studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of uniform site specs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collider Design Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of minimum machine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum machine & cost-reduction studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review TDP-II baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publish TDP-I interim report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare technical specifications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical design work</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rationale

• Cost constraint in TDR
 – Updated cost estimate in 2012 ≤6.7 BILCU
 – Need margin against possible increased component costs

• Process forces critical review of RDR design
 – Errors and design issues identified
 – Iteration and refinement of design
 – More critical attention on difficult issues

• Balance for risk mitigating R&D
 – Majority of global resources focused in R&D
 – Important to prepare / re-focus project-orientated activities for TDP-2

• Need for design options and flexibility
 – Unknown site location
Rationale

• Cost constraint in TDR
 – Updated cost estimate in 2012 ≤ 6.7 BILCU
 – Need margin against possible increased component costs

• Process forces critical review of RDR design
 – Errors and design issues identified
 – Iteration and refinement of design
 – More critical attention on difficult issues

• Balance for risk mitigating R&D
 – Majority of global resources focused in R&D
 – Important to prepare / re-focus project-orientated activities for TDP-2

• Need for design options and flexibility
 – Unknown site location

PM believe this will lead to a more
- Robust
- Mature
- Defendable
Design.
Basically a better design.
History (Review)

- **DESY EC 01.2008**
 - Cost reduction endorsed/encouraged as one of the themes of TDR Plan
- **Sendai 03.2008**
 - Cost reduction studies WG
- **Dubna 06.2008**
 - Review of Cost Reduction proposals (new ideas).
 - Single tunnel central theme
 - Consolidation of “Minimum Machine” elements.
- **KEK EC 08.2008**
 - EC endorses Minimum Machine elements
- **PAC Paris 10.2008**
 - MM elements reviewed.
 - Focus on ‘simplification’ not cost saving.
- **LCWS Chicago 11.2008**
 - Discussions on Minimum Machine (clarification)
- **TILC09 Tsukuba 04.2009**
 - AAP review, including ‘minimum machine’
 - Renamed as AD&I
- **DESY AD&I 05.2009**
 - Formation of AD&I group
 - PM’s proposal SB2009 Working Assumptions
 - Action items
- **ALCPG ‘09 ALBU. 09.2009**
 - See next slide
Two Important Documents

ILC Minimum Machine Study Proposal
January 2009

Summary report of the first meeting on Accelerator Design & Integration
28-29th May, DESY

5th June, 2009

Prepared by the Technical Design Phase Project Management

Editors: Chris Adolphsen (SLAC)
Jim Clarke (STFC Daresbury Lab.)
Kiyoshi Kubo (KEK)
Vic Kushler (FNAL)
Ewan Paterson (SLAC)
Marc Ross (FNAL)
Andrei Seryi (SLAC)
Nick Walker (DESY)
Andy Wolski (Cockcroft Inst.)
Akira Yamamoto (KEK)

Editors: Ewan Paterson (SLAC)
Marc Ross (FNAL)
Nick Walker (DESY)
Akira Yamamoto (KEK)

ILC-EDMS ID: D*879845

Contains proposed parameter tables
Straw-man Baseline 2009
Working Assumptions (WA)
SB-2009 Proposal (PMs)

1. A Main Linac length consistent with an optimal choice of average accelerating gradient
 - RDR: 31.5 MV/m, to be re-evaluated

2. Single-tunnel solution for the Main Linacs and RTML, with two possible variants for the HLRF
 - Klystron cluster scheme
 - DRFS scheme

3. Undulator-based e+ source located at the end of the electron Main Linac (250 GeV)
 - Capture device: Quarter-wave transformer
4. Reduced parameter set (with respect to the RDR)
 - $n_b = 1312$ (so-called “Low Power”)

5. Approx. 3.2 km circumference damping rings at 5 GeV
 - 6 mm bunch length

6. Single-stage bunch compressor
 - compression factor of 20

7. Integration of the e+ and e- sources into a common “central region beam tunnel”, together with the BDS.
SB2009 Parameters (WA)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RDR</th>
<th>SB2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam and RF Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of bunches</td>
<td>2625</td>
<td>1312</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>ns 370</td>
<td>ns 740</td>
</tr>
<tr>
<td>beam current</td>
<td>mA 9.0</td>
<td>mA 4.5</td>
</tr>
<tr>
<td>Avg. beam power (250 GeV)</td>
<td>MW 10.8</td>
<td>MW 5.4</td>
</tr>
<tr>
<td>Accelerating gradient</td>
<td>MV/m 31.5</td>
<td>MV/m 31.5</td>
</tr>
<tr>
<td>P_{fwd} / cavity (matched)</td>
<td>kW 294</td>
<td>kW 147</td>
</tr>
<tr>
<td>Q_{ext} (matched)</td>
<td>3×10^6</td>
<td>6×10^6</td>
</tr>
<tr>
<td>t_{fill}</td>
<td>ms 0.62</td>
<td>ms 1.13</td>
</tr>
<tr>
<td>RF pulse length</td>
<td>ms 1.6</td>
<td>ms 2.0</td>
</tr>
<tr>
<td>RF to beam efficiency</td>
<td>% 61</td>
<td>% 44</td>
</tr>
<tr>
<td>IP Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norm. horizontal emittance</td>
<td>mm.mr 10</td>
<td>mm. 10</td>
</tr>
<tr>
<td>Norm. vertical emittance</td>
<td>mm.mr 0.040</td>
<td>0.035</td>
</tr>
<tr>
<td>bunch length</td>
<td>mm 0.3</td>
<td>mm 0.3</td>
</tr>
<tr>
<td>horizontal b^*</td>
<td>mm 20</td>
<td>mm 11</td>
</tr>
<tr>
<td>horizontal beam size</td>
<td>nm 640</td>
<td>nm 470</td>
</tr>
<tr>
<td>vertical β^*</td>
<td>mm 0.40</td>
<td>mm 0.48</td>
</tr>
<tr>
<td>vertical beam size</td>
<td>nm 5.7</td>
<td>nm 5.8</td>
</tr>
<tr>
<td>D_y</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>dE_{BS}/E</td>
<td>% 2</td>
<td>% 4</td>
</tr>
<tr>
<td>Avg. P_{BS}</td>
<td>kW 260</td>
<td>kW 200</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2×10^{34}</td>
<td>1.5×10^{34}</td>
</tr>
</tbody>
</table>
Primary Focus & Issues
CFS: Primary Cost Driver

• Assumed primary advantage of SB2009 options is reduced CFS scope
 – Underground tunnel / volume
 – Reduced cooling requirements

• Focus of 2009 activities is to assess impact on CFS solutions
 – Removed, added, modified

• SB2009 reduces underground tunnel length by ~27 km
Primary Issues

- Single ML Tunnel
- HLRF Solutions
- Central Region Integration
- (undulator) Positron Source
Two luminosities quoted:
1.5 with high vertical disruption (~25)
2.0 with ‘travelling focus’
Primary Issues

- Single ML Tunnel
- Central Region Integration
- Linear RF Polarizations (undulator) Positron Source
- Planning for re-evaluation of gradient in early 2010

Choice of Average Accelerating Gradient
Accelerating Gradient

- Parameter with largest cost-leverage
 - Major focus of global R&D effort (‘S0’)

- On-going database effort to evaluate ‘yield’
 - Cost implications

- For TDP-2 baseline, unlikely to change current Working Assumption (31.5 MV/m)

- Change of gradient at later stage only affects length of linacs
 - At 10% level easily scalable
 - No other subsystems affected

- New approach to ‘yield’ being evaluated, supporting larger spread in cavity performance
 - Average still (currently) 31.5 MV/m
 - Up to 20% spread is probably acceptable
High-Level RF Solution

• Seen as critical component for one-tunnel solution.

• Two solutions:
 – Klystron Cluster concept
 • RDR-like 10 MW klystrons/modulators on surface
 • Surface building & shafts every ~2 km
 • Novel high-powered RF components (needs R&D)
 – Distributed RF Source
 • Small ~700kW klystrons+modulators in tunnel
 • One klystron per four cavities
 • ~1880 klystrons per linac
 • Challenge is design for manufacture (cost reduction)
Distributed RF Source

Sketch of 3-Cryo-module unit

6.6kV In & Rectifier Transformer Capacitor Bank, Bouncer

Cryomodule

PDS

MA Klystron

Gamma ray Shield Tunnel

Control Rack

DC P/S

MA Modulator

Coil P/S & HTR P/S

RF Amplifier etc
5 Reference slides: RF Cluster Scheme,

The waveguides share a shaft down to the accelerator tunnel and then turn, one upstream and one downstream, to feed, through periodic taps, a combined 64 RF units, or ~2.5 km of IMAC.

- Service tunnel eliminated
- Underground heat load greatly reduced

1.25 km upstream

1.25 km downstream
• Schematic layouts of conventional facilities and RF units

Four more surface stations

8 more RF units than RDR (#5 Shaft Cryogenic Plant)
Central Region Integration

- RDR solution complex (CFS)
- Three tunnel concept
- Looked for consolidated solutions
Central Region Integration

5 GeV Boosters share tunnel with BDS
E- Gun and injector share tunnel with BDS
Undulator + Aux Injector + E+ Tgt-Capture-Accel + Booster share tunnel with BDS
No Keep Alive source and two tunnels, beam + support

Undulator
e+ wiggler and rf
e- wiggler and rf
E+-/ Warm Accel
E+ Tgt + Capture + Accel
5GeV Injector Booster
Reduced Beam Power

- Reduced Klystron Count (50%)
- Smaller Damping Ring (50%)
- Lower power in wave guide distribution
- Reduced CE requirements
 - Efficiency! < factor 2
- Longer RF Pulse
- Reduced Source Requirements
 - Less bunches
 - reduced average power
- Reduced Beam Power Handling
 - Positron Target
 - Beam Dumps...
Reduced Beam Power

- Reduced Klystron Count (50%)
- Smaller Damping Ring (50%)
- Lower power in wave guide distribution
- Reduced CF requirements
- Longer RF Pulse
- Reduced Source Requirements
- Reduced Beam Power Handling

HLRF Solution

- Linac Tunnel Layout
- Shafts Configuration
- RF component specs.

Efficiency! < factor 2

Less bunches

Reduced average power

Positron Target

Beam Dumps

29-09-2009 N. Walker - ALCPG09
Upgrades & Physics Scope Impact
Upgrade Considerations: Energy

- Need to maintain RDR TeV Upgrade capability
 - i.e. build more linac
 - BDS geometry to support 500 GeV beam energy
 - Main (high-power dumps) rated for max. beam power

- Must consider impact on SB-2009 of upgrade scenarios (compared to RDR)
 - Example: positron source
Upgrade Considerations: Luminosity

- Reduced power option opens up scope for possible Luminosity Upgrade

- i.e. putting back 30-50% missing klystrons and associated infrastructure

- Potentially up to $\times 2$ increase in L
 - After initial running experience is gained

- Impacts many systems.

- Various scenarios can be considered
 - Impacts on upfront cost saving
Low-P: Upgrade Options

Minimum support for low-P:
- Reduced Klystrons/Modulators
- Reduced CFS
- Smaller DR*

Just Remove Klystrons/Modulators

Cost Reduction

Cost & Scope of Upgrade

Low-Power Scope
Damping Ring Low-P Considerations

• Reduced (\(\div 2\)) bunch number → Reduction in DR circumference by same fraction
 – Current remains constant
 – Inj/ext kicker specs remain the same
 – e-cloud issues remain ~unchanged

• Can we double the number of bunches in a 3.2km ring?
 – Double current in ring
 – Kicker timing OK (needs R&D, but part of RDR spec.)
 – e-cloud is likely major bottleneck
Positron Source

• **SB2009** has e+ source located at exit of e- main linac
 – RDR: at 150 GeV beam energy point in e- ML

• **E_{cm}** running below 300 GeV will be affected
 – RDR: decelerate the beam after undulator
 • Not without its own complications
 – SB2009: re-visit solutions proposed by TESLA
 • Double pulsing
 • Bypass concepts (probably only for GigaZ)
Three Additional Important Issues

- **Availability (single tunnel)**
 - Import consideration for single-tunnel solutions
 - Task Force charged with finding HA solutions for proposed single tunnel
 - DRFS & KCS

- **Safety Issues (single tunnel)**
 - Second important issue for single-tunnel
 - Solutions being investigated
 - Likely differing solutions for each region

- **Risk Assessment (general)**
 - Important aspect of SB2009 analysis
 - Risk Register will be reviewed and updated
 - Some increase risk expected
Three Additional Important Issues

• Availability (single tunnel)
 – Import consideration for single-tunnel solutions
 – Task Force charged with finding HA solutions for proposed single tunnel
 • DRFS & KCS

• Safety Issues (single tunnel)
 – Second important issue for single-tunnel
 – Solutions being investigated
 – Likely differing solutions for each region

• Risk Assessment (general)
 – Important aspect of SB2009 analysis
 – Risk Register will be reviewed and updated
 – Some increase risk expected

Subjects covered in this workshop

Results to be summarised in closing PM plenary
Process towards a Formal Baseline

Next Steps
Next Steps (2009)

• GDE focus this meeting will be to consolidate SB2009 Working Assumptions
 – Review action items and outstanding issues from DESY meeting
 – Produce a first-guess estimate of cost increments
 – Begin to prepare Proposal Document

• AD&I meeting 2-3.12 (DESY)
 – 1st draft of Proposal Document
 – Resolve remaining WA issues

 Including designated representatives from Physics & Detector community

• Proposal Document final draft made public 18.12.09
 – Formally to Director/EC
 • Forwarded to AAP for review
 – Entire community (i.e. you) for comment/feedback
Next Steps (2010)

- AAP formal review (4-6.01.10)
 Review/include feedback from AAP and ILC community

- Final establishment of TDP-2 ILC baseline at LCWS (Beijing, 03.03.10)
 Preparation / planning for TDP-2 activities

- Presentation of new baseline at ICHEPP (Paris, 07.10)
 Formal start of TDP-2
Baseline: a forward looking configuration which we are reasonably confident can achieve the required performance and can be used to give a reasonably accurate cost estimate by mid-end 2012 (→ TDR)

Alternate: A technology or concept which may provide a significant cost reduction, increase in performance (or both), but which will not be mature enough to be considered baseline by mid-end 2012
Summary

• AD&I process will lead to a more cost-effective, defendable and complete design

• Cost reduction element is important for
 – Cost constraint (margin for cost update)
 – Defendability

• Baseline proposal document to be submitted end of this year

• Formal acceptance as new baseline at LCWS (Beijing March 2010)

• Your comments welcome!